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Abstract

Plebanski’s Modified Chiral BF Lagrangian for General Relativity [5] possesses local

SL(2,C) Lorentz representations, whose internal indices AA′ associated to the spin struc-

ture become spinor indices through a dynamical soldering bivector 2-form, ΣAB
µν . The

spin structure group is the gauge group for spinor dyads, a six parameter Lie subgroup of

GL(2,C). By employing this full 8-dimensional group structure, using Robinson’s [14] first

order variational formalism comprising connection and handed self-dual bivector form, SAB,

(an oriented pseudo-tensor density) charged fermion and scalar fields are coupled to a unified

gravitational-electromagnetic field. When off-shell reality conditions on the fermion fields are

imposed a restricted gauge SL(2,C)⊗U(1) symmetry results. Unlike in more recent work of

Smolin et al [38] the construction remains chiral and such “simplicity” conditions are kept

off shell. The ambiguity in the definition of the metric described by the restricted orthog-

onal group mapped to GL(2,C) is made explicit through its transformation properties as

developed in unpublished notes of Peblanski, [6]. The symplectic metric ε̃AB of the spin

bundle “density” is viewed as primary and the soldering functor, σ̃AA
′
µ embodying metricity

gµν on space-time is derived from field equations of a Chiral Einstein-Maxwell Lagrangian.

Charged scalar fields are constructed as complex valued weighted-spinor densities to be in-

terpreted as Higgs or Brans-Dicke dilaton in nature. Gauge fixing and Integrability issues of

the GL(2,C) unified-field potential are discussed by making contact with Lanczos potential

and Bel-Robinson Entropy super tensors for the weak field equivalent of a Weyl-Faraday

curvature spinor of Penroses Cyclic Conformal Cosmology radiation-only endgame.
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Preface

According to the Cosmic Cyclic Cosmology, CCC of Penrose the remnants of a once
material universe will be massless photons riding a gravitational wave from the last
pop of Black hole Hawking radiation. Tracing out a timeless null geodesic this final
emanation marks the expunging of the ticking of time. With purgatory tripped we
have arrived at oblivion, the non-era pervaded by gravito-electromagnetic radiation,
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a scale-less conformal space, that becomes the precept for material renewal. The
Cyclicality of Penrose renders the end game, a beginning sourced by lone immaterial
Weyl-Curvature and Faraday Fields that are not Peeling off to infinity after all.

Motivating Variants of Einstein’s Gravitation

Reformulations of Einstein’s field equations, GR over the past sixty years have been
stimulated by influences such as the developments in the study of gauge theories, the
construction of half-flat solutions in the 1980’s by, for example, Penrose, Newman
and Plebanski and the recasting of the Hamiltonian formulation of general relativity
in terms of new variables by Ashtekar. The latter, itself a response to the first two
influences, reintroduced the idea of regarding the connection and bases of two forms
as primary dynamical variables with the metric a secondary derived variable. The
novelty of such schemes has been the focus on so-called complex, C-valued chiral
actions and complex versions of Einstein’s equations. Other motivations are in trying
to make classical formulations more amenable to quantization programs such as the
path integral approach.

Metric Emergence

That the metric is merely a derived unobservable gauge quantity motivates geometric
algebra programs that posit either the pre-eminence of conformal equivalence of rays
or spin bundle structure over a derived space-time. In Penrose’s twistor program, a
twistor, Zα = (ρA, πA′) represents the enitre (ray) history of a free classical massless
particle with definite helicity, s from which space-time emerges as the common points of
intersection of ray families. Locally at least, two valent anti-symmetric twistors called
“infinity twistors” fix the (derived/implied) metric structure of space-time. The twistor
algebra viewed as an extended spinor algebra is then to be viewed as the fundamental
structure for unifying quantum mechanics and general relativity. Equivalence is driven
by the symplectic spin group, Spin(1, 3) of unitary determinant, a 2-1 map of the group
of orthogonal transformations, SO(1, 3)1 and in particular its subgroup, Spin+(1, 3)
a double-cover of the restricted2 orthogonal group, SO+(1, 3). The latter in turn has
universal covering group SL(2,C) that facilitates represention of null vectors through
the outer product of left and right-handed Weyl spinors3,

so(1, 3C)+ ⊕ so(1, 3C)−
∼−→ sl(2,C)⊕ sl(2,C). (1)

Geometrically Einstein’s freely falling elevator is captured in the soldering functor
σaµ providing the local identification of space-time with local Lorentz quantities of
the observer within the definition of the non exact differential form, θa = σaµdx

µ, it
cogently encodes his Equivalence Principle of inertial and gravitational masses. These
co-frames being not integrable at each event constitute a non-coordinate (anholonomic)
Lorentz basis form the Cartan G-structure with cotangent bundle, T*B soldered to

1Conformal transformations preserving angles define a group C(0, 2) double-cover rep. of SO(1, 3)
2that subgroup of transformations continuously connected with the identity
3Weyl spinors being irreducible representations of SL(2,C)
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spacetime.4 Both the TB and the T*B at a point are both real vector spaces, V and U
of the same dimension and therefore isomorphic to each other via many possible iso-
morphisms. That space-time, M itself affords a Geometric Algebra can be summarised
by considering the aggregate of its multi-vector structures,

[scalars, vectors, bivectors, trivectors, pseudoscalar-volume form]

on the linear (co)-tangent spaces U,V to space-time, M. Given U we can construct the
exterior space ΛU , the space of aggregates of multivectors of these different orders (0
to 4) of U that is closed under the exterior ∧ product. In this way ΛU becomes an
algebra, the Grassman or exterior algebra. The introduction of a Riemannian, g or
symplectic , ε metric gives rise to a natural isomorphism between the tangent space
and the cotangent space at a point, associating to any tangent co-vector a canonical
tangent vector. This is implicit5 in the defining of an oriented C-valued version of
a 4-volume pseudo-scalar η ∈ Λ4U of space-time through the use of the Hodge dual
operation ∗,

η = ∗(θa ∧ θb ∧ θc ∧ θd) :=
1

4!
φε̃abcdθ

a ∧ θb ∧ θc ∧ θd

φε̃abcd ↔ i(εACεBDεA′D′εB′C′ − εADεBCεA′C′εB′D′).

Typically φ would be the square root of the modulus of the metric determinant,
√
g

a tensor density of weight +1 to offset the -1 weight of ε̃. In standard metric-affine
formulations the spacetime metric emerges from the a priori metric symplectic spinors
according to gab ↔ εABεA′B′ .

In this spirit, the variational formulation of Plebanski [5] uses ∗ as an indempo-
tent algebraic structure splitting the local algebra of the complexified SO(1, 3)C

∼−→
SO(4,C) gauge bundle over space-time, M into left and right handed ideals,

so(1, 3)C = so(1, 3C)+ ⊕ so(1, 3C)−.

The fully chiral dynamical variable, a basis of anti-self dual two-forms ΣAB, is to
be interpreted as the gauge-potential field which in the weak field limit possesses an
excited “graviton” state.6

The Geometric Algebra of physical 3-space, that is the Clifford algebra Cl3 is suffi-
cient to describe physical 4-space-time because as (1) shows for the universal covering
group it forms a self-adjoint subspace, [40]: the space Cl∗3 := GL(2,C) of “rotors”,
an 8-dimensional real Lie group of which SL(2,C) is a six parameter subgroup,

GL(2,C) := {ξ ∈ GL(2,C)|ξAB = fLAB, f
2 = det(ξAB)}.

GL(2,C) transformations can thus be decomposed into SL(2,C)⊗ C according to,

4for a configuration space of a generic field, φA the fibre bundle of frames is π : B →M . While the
cotangent bundle T*B of the symplectic geometry of phase space does not need a metric structure on
the basic world sheet, M to define the differential of a function, a metric is needed in order to define
the gradient on its (dual) tangent bundle, TB. As such the tangent co-vector of T*B is called the
canonical one-form or symplectic potential and can be viewed as that primitive object from which
the metric structure on the base is derived.

5↔ idicates isomorphism between Levi-Cevita tensor density and symplectic spinor metric.
6That is, once reality conditions are applied “off-shell” to an otherwise complex field.
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ξÃB = fLÃB and (ξ−1)B̃
A = f−1(L−1)B̃

A.

The homomorphism of Cl∗3 into the 7-dimensional Unimodular group, UL(2,C) of
Lorentz dilations, being the product, in any order, of an element of the restricted
Lorentz group and a homethety. While UL(2,C) is a subgroup such that |ξ| = 1
where weights and anti-weights overlap, the spinorial group, SL(2,C) transforms with
ξ = 1. The relevant machinery of spinor-density valued objects was developed in
unpublished notes of Plebanski, [6] the salient features of which are collected in the
article.

Noteworthy in the above constructions is that a “metricity” constraint fixing the
dynamical connection as metric compatible Qab = Γ∇gab = 0, so that Weyl Dilations
find no physical representations needs to be put in by hand, external to a variational
formalism. The constructions to be developed in the following are distinct from that
of Weyl who previously tried to relate Maxwell to linear connections which were non-
metric, [3]. Indeed this need not be the case as we could define the symplectic spinorial
covariant derivative according to, Γ∇̃εAB = QAB 6= 0 but such a further variation will
not be entertained here and which interestingly has not been considered in non-chiral
developments by Smolin et al, [39].

Machian and Wave Eigenstate convergence

Einstein’s General Theory is built on the Equivalence Principle, ab initio locally defined
it rests uneasily with its concomitant non-local radiation predicted features: a unit
charge hanging on a thread attached to the ceiling of a freely falling Einstein lift, to
an observer in the lift, does not appear to radiate as it is at rest but, viewed by an
observer on the Earth it radiates falling down as it is with constant acceleration, g. It
is Boundary Conditions, rather than the Field Equations that embody and identify a
wave’s nature.7In the case of gravitational waves, this (linearised) gravitational field
is required to possess a quadrupole moment.8

Requiring that a gravitational wave should satisfy boundary conditions at infinity9

means, in the presence of electromagnetic radiation, a spacetime has a far from source
Ricci tensor in the form of a null dust with double null vector. The gravitational plane
wave has a 5-dimensional group of isometries just as a plane electromagnetic wave
has a 5-dimensional group of symmetries: Bondi et al inspected all Ricci flat metrics

7Motivated by this inconsistency, Brans-Dicke and Sciama’s search for a theory closer to Einstein’s
Machian pretensions, a theory of inertia, was one in which local experiments could be interpreted
as giving information about the universe as a whole.Other variants of Einstein’s General Theory
look to more fully encapsulate Mach’s principle of inertia (following the work of Brans-Dicke), by
offering extra degrees of freedom to far field solutions of Gravitational Waves, (GW) or by offering
predictions disinguishable from GR in respecting stronger versions of Einstein’s Equivalence Principle.
The 2018 sourced gravitational and electromagnetic wave (gamma ray bursts) from a neutron-star
merger detected by LIGO, [32] and the space-based Fermi satellite confirmed the speeds of GW and
EW as equal comparable down to 15 orders of magnitude precision: just as an EW is an oscillation in
the E and B̂, captured spinorially in the bi-vector Faraday field, φAB that propagates at the speed of
light, c = 1√

εµ , so is a GW an oscillation in the gravitational field, Weyl Curvature spinor, ΨABCD.
8Such that the GW, in its standard interpretation, when passing through any point in space, would

both stretch space in one direction and compress the space in the orthogonal direction. Alternative
theories of gravity can describe in addition to this “tensor” mode, vector and scalar polarised modes
determining how the GW distorts spacetime and in what direction it can move in as it propagates.

9A generalisation of Sommerfelds radiation conditions
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with symmetries of dimension greater than or equal to 4, (as given by Petrov10.) and
found exactly one class of solutions with the same 5-dimensional group isomorphic
to the symmetry group of the electromagnetic eld. The class of metrics obeying this
defintion of a plane gravitational wave depends on two free functions of one variable:
the wave amplitude and its direction of polarization. The far from the source ra-
diative (boundary) conditions selects out the algebraic special criterion, picking out
from amongst the four special types those spacetimes designated as type N, with Weyl
curvature tensor as the leading term at infinity. That both electromagnetic and grav-
itational radiation in certain spacetimes travel with the same speed of that of light in
a vacuum has been described through an extension to Petrov classification schema.

Handedness resurgence

The 2017/8 LIGO findings, at the very least do not repudiate the intertwinedness of
electromagnetism and gravitation as two fields being describable in the Newtonian
limit by a common Gaussian potential. As with the Standard Model, Dark Matter
theories appear to bias a dilineation of gravitational over electromagnetic interactions
even at weak field limits. To this end it is worth exploring the extent of a theory’s
reliance on its scalar-field and handedness content above and beyond any geometric
naturalness considerations which have not borne fruit for the last forty years. The
extra polarization states of GWs in the weak field limit motivate the construction of
an intrinsically chiral scalar field in addition to normal GR tensorial-spin 2 modes.

The ontology of a BF-like GL(2,C) Gauge Theory

We are thus led to the construction of a Palatini style, Chiral Einstein-Maxwell La-
grangian comprising GL(2,C) valued “metric-affine” potential with the charged scalar
fields being most “naturally” described as complex-valued weighted-spinor densities.
To summarise the framework to be developed, we have the decomposition of the
GL(2,C) connection,

γAB = ΓAB + δABγ
C
C ,

that itself transforms as a covariant vector,

γÃB̃ = ξÃA(ξ−1)B̃
BγAB + ξÃSd(ξ−1)B̃

S,

in which the trace of the connection is identifed with a complex Faraday gauge potential
γCC := γ = 2A. The forms ΓAB are defined up to SL(2,C) transformations induced
by GL(2,C) according to the affine representation,

γ̃ = γ − dln(ξ) and ΓÃB̃ = LÃA(L−1)B̃
BΓAB(ε) + LÃSd(L−1)B̃

S,

and the hermitian matrix of 1-forms, θAB
′

= θAB
′
aθ
a is a weighted spinor density

(w = −1
2
, w̄ = −1

2
) under GL(2,C),

10The Petrov classication consists in the enumeration of the distinct eigendirections of the Weyl
tensor called principal null directions (PNDs). If at a point all four PNDs are distinct, the spacetime
at this point is called algebraically general. If at least two of the PNDs coincide, the spacetime at
this point is called algebraically special. Various coincidences of PNDs may occur, resulting in the
stratication of the algebraically special spacetime points into four Petrov types with the Weyl tensor
of a purely radiative spacetime being asymptotically of type N
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θÃB̃
′
= ξÃCθ

CD′
ξB̃

′
D′ = fLÃCθ

CD′
f ′LB̃

′
D′ .

In defining the determinant of the metric as per Urbantke [31] in terms of the basis
bivectors of non degnerate gl(2,C)-valued S-forms, rather than the matrix of 1-forms,
θAB

′
according to,

√
g =

i

3
{SABαβSBAγδ +

1

2
SαβSγδ}εαβγδ.

charged scalar fields, φ, π defined as complex valued weighted, w = (1, 0) -spinor
densities (that may be interpreted as Higgs or Brans-Dicke dilaton in nature) may be
simply added to give a fully GL(2,C) chiral Einstein-Maxwell-Scalar Lagrangian,

fAB ∧ SBA +
1

2
ΞB

A
D
CSBA ∧ SDC +

√
g{π̄µ(γDµφ)− π̄µπνgµν + πµ(γDµφ̄)}. (2)

After outlining some of the motivation for the geometric approach being followed
and introducing the chiral Lagrangian with its chiral coupling formulations to both
fermionic and saclar fields, Gauge fixing and Integrability issues within this GL(2,C)
unified-field framework are outlined. The latter references the work of Lanczos, Bel-
Robinson and Ellis in their respective construction of potentials of linearised grav-
itational field and Entropy super tensors. More techincal details associated to the
G-structure of the theory resides in the appendices.

Falling co-frame formulation of the General Theory

A field theory, be it classical or quantum, has as its final form a set of differential
equations. If the dynamical theory is to autmatically possess conserved Noether cur-
rents the field equations will arise from a Variational principle. To hone its solution set
to observed solutions supplementary constraints may be required. An action density
involving first order derivatives of the gravitational metric potential is not a scalar den-
sity. It would be a scalar if formed straight from the contracted Riemann Curvature
tensor,

√
−gF [gµν ] involving second order derivatives in gµν . Einstein’s introduction

of the connection, Γabµ as a further independent dynamical variable comes at the loss
of this invariance. Ellie Cartan’s bundle formulation11 in terms of elevator frame σaµ
read as,

?F a
b ∧ θb = −8πT a,

Γ∇ηab = ηabc ∧Θc = −8πτab.
(3)

The components of the energy-momentum, Tab and spin tensors, τabc are given in terms
of the three forms Ta = Tabη

b, τab = τabcη
c. Here ηa = ∗θa is the three form Hodge

dual of the co-frame, θa = σaµdx
µ, a differential form providing the local identification

of space-time with local Lorentz quantities of the observer.

11For Lorenzian a = (0, 1, 2, 3), Lorentzian time-space indices of a freely falling frame and general
co-ordinate indices µ = (0, 1, 2, 3)
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Cartan’s Structure Equations

For Real General Relativity the soldering functor, σaµ is required to be real (θa = θa),

σµAA
′ = σµ

AA′
. Imposing hermicity on θAA

′
= σAA

′
µdx

µ realises a real Lorentzian
metric12 given as ds2 = εABεA′B′θAA

′⊗θBB′
. With ΓAB and Γ̄A

′
B′ (complex conjugate)

sl(2,C)-valued connection one-form potentials with Torsion two form field, ΘAA′
, the

first Cartan structure equation reads

ΘAA′
:= dθAA

′ − θAB′ ∧ Γ̄A
′
B′ − θBA′ ∧ ΓAB.

That is, ΘAA′
:= ∇θAA′ , where ∇ ≡ Γ∇ denotes the exterior covariant derivative with

respect to the sl(2,C)-valued connection(s). The internal ‘symplectic metric’, εAB is
given as fixed so that the internal SL(2,C) connection is then traceless ΓAB = ΓBA
due to ∇εAB = 0. Defining the basis of anti-self dual two-forms as ΣAB := 1

2
θAA′∧θBA′

,
the second Cartan structure equations take the complex form,

FAB := dΓAB + ΓAC ∧ ΓCB,

FAB := ΨA
BCDΣCD + ΦA

BC′D′Σ̄C′D′
+ 2ΛΣA

B + (χD
AΣB

D + χDBΣAD),
(4)

where the curvature two-form, FAB, has been decomposed into spinor fields of
dimension 5,9,1 and 3 respectively, corresponding to the anti-self dual part of the
Weyl conformal spinor, ΨA

BCD, the spinor representation of the trace-free part of the
Ricci tensor, −2ΦA

BC′D′ and the Ricci scalar 24Λ, - all with respect to the curvature
of the SL(2,C) connection and χAB arising from the presence of non-zero torsion. We
note for now the 5 dimensions of Ψ, which of its five complex components Ψ0...Ψ4

defined across linearly-independent null tetrad fields, the Ψ4 characterises an outgoing
wave-like field. It turns out that ΣAB, defined in terms of the co-frame dynamical
variable, here for mere ease of exposition can be viewed as a dynamical basis variable
of a variational principle whose interpretation is of a fully chiral dynamical “graviton”
field object once reality conditions are applied “off-shell”.

Lagrangian of Chiral left-handed Dynamical Field

For a Maxwell Faraday field we can define a C-valued anti-self dual Faraday field using
a Hodge∗ structure,

−fab = fab + i∗fab.

That the photon has helicity, s=1 is made apparent by expressing the F through the
antisymmetric quantities εAB and εA′B′ , that provide symplectic structure13 to two-
dimensional spin space,

−fab ↔ φABεA′B′ , and +fab ↔ φ̃A′B′εAB

where we write in abstract indices so a pair of capital spinor indices, unprimed and
primed, stand for a single tensor index,

fab ↔ φABεA′B′ + φ̃ABεAB. (5)

12Following [26] we consider this metric as nothing more than a paramterization of the gravitational
field

13The isomorphism between Levi-Cevita tensor density and symplectic spinor metric is indicated
by ↔.
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We can then see the decomposition of the gauge vector boson (1, 1) = (1, 0)⊕(0, 1),
the photon in this linearised theory, into left-handed (negative helicity, s=-1) and right-
handed parts. To ensure the field f is a solution to the real field equations14 we require
that the C-valued φ fields be complex conjugates of eachother ∗fab = −ifab, that is
φ?AB = φ̃A′B′ . We have thus a symmetric spinor φAB = φ(AB) field, its two unprimed
spin 1

2
indices indicative of it being the anti-self dual part of the f .

Metric-Affine Gravity from a Topological BF field theory

In a gauge field theory of gravity, Trautman’s Real Metric-Affine, Einstein-Cartan
Lagrangian reads as 15,

LEC = −1

2
Fab ∧ ηab = Fab ∧ ∗(θa ∧ θb),

= L+
EC + L−EC = −1

2
[F+(Γ+) + F−(Γ−)] ∧ ηab,

= − i
2

[F+
ab ∧ Σab −F−ab ∧ Σab],

↔ −i[FA′B′ ∧ ΣA′B′ −FAB ∧ ΣAB].

(6)

Capovilla R, Dell J, Jacobson T, [8] Complex Lagrangian16 follows,

LSSJ = 2LEC = iθAA′ ∧ θBA′ ∧ FAB

= LEC −
i

2
d(θa ∧Θa) +

i

2
Θa ∧Θa,

from which Plebanski’s, [5]

i

2
LΣ(Σ,Ψ,Γ) = {ΣAB ∧ FAB −

1

2
ΨABCDΣAB ∧ ΣCD} (7)

formulation in terms of the basic field variables sl(2,C) valued bivector and connection
can be inferred. The Lagrange Multiplier term, −1

2
ΨABCDΣAB ∧ΣCD forces the Ricci

part of the Curvature two-form to vanish and crucially the constraint arising from
the variation (of what turns out to be the Weyl Curvature spinor of the gravitational
field), Ψ dictates that ΣAB is determined by a tetrad, up to SL(2,C) transformations
on primed indices. The wholly Chiral nature of the Pebanski formulation is in the
sense that local Lorentz representations involve only SL(2,C) and not its conjugate,
SL(2,C). That is, the dynamical field object rather than being a mixed index co-
frame, θAA

′
= σAA

′
µdx

µ, from which the (real Lorentzian) metric is derived “on-shell”
as ds2 = εABεA′B′θAA

′ ⊗ θBB′
is defined a priori as the anti-self dual two-form, ΣAB;

the archetypal B field in BF theory. This is discussed extensively in [9].

14Within the U(1) gauge field theory of electromagnetism there is a need for supplemental “gauge
fixing” conditions to hone the solution set to only those helicity states realised in nature. Without
such “simplicity constraints” there will be unavailable polarisation states afforded to f . Most of the
quantitative physical predictions of a gauge theory can only be obtained under a coherent prescription
by suppressing or ignoring these unphysical degrees of freedom.

15The R-valued bivectors themselves are simple in the sense that they can be constructed from the
verbein co-frame one forms θa = θaµdx

µ ∈ ΛU as Σab = θa ∧ θb ∈ Λ2U .
16Written merely conveniently in terms of the simple complex valued bi-vectors, ΣAB ,ΣA

′B′
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Non-Chiral or Off-Shell Chiral Reality

Diffeomorphism invariant topological field theories such as BF theory possess an ab-
sence of local degrees of freedom. In its rawest geometrised form the Real space-time
manifold carries on it a SL(2,C) spin (trivial vector) bundle, B and its conjugate B̄
associated to this PB. The tensor product of these two bundles is then identified with
the complexified tangent bundle. Each fibre, S ≡ C2 of B consists of a 2-complex
dimensional vector space equipped with the symplectic metric, εAB. For illustration
sake, if one reverses the view, observing the construction of the non-chiral Lagrangian
built of complex form fields from a complexification of the real tetrad on the manifold,
we see that from the real η17 of (6) we can form the complex η + i∗η ∈ Λ4UC which
splits the complexified space of bivectors, Λ2UC = Λ2

−UC + Λ2
+UC into pairs of simple

C-valued bi-vectors,

−Σab =
1

2
(Σab + i∗Σab) =

1

2
(Σab + iηab)↔ ΣABεA

′B′ ∈ Λ2
−UC.

For Plebanski’s complex BF-like Lagrangian, (7) to remin chiral as a Variational
principle for Real General Relativity the following reality (non-chiral) conditions on
the SL(2,C) valued two forms, ΣAB need to be put in by hand, to ensure a real
Lorentzian space-time,

ΣAB ∧ Σ
A′B′

= 0, and ΣAB ∧ ΣAB + Σ
A′B′

∧ ΣA′B′ = 0. (8)

That is, they do not follow naturally as Euler-Lagrange equations and must be
imposed “off-shell”. It is these “simplicity” constraints (8) that enables a topological
(BF) field theory to be a “BF-like” theories with local degrees of freedom. Smolin
[38] and [39] et al have embraced these reality conditions within an U(2) symmetry
breaking non-chiral BF Lagrangian. Their non-chiral Plebanski action is thus more a
theory of two metric “forms” with the presence of the simplicity constraints forcing
them to coincide. Parity breaking arises at the level of the field equations and as such
has much to commend in its naturalness.

Warding off Gauge redundancy

The off-shell18 imposition of reality conditions on Σ is not a an irredeemably unique
negative feature19 of the Plebanski’s chiral formulation. We note the prevelance of

17The defining of an oriented C-version of the 4-volume pseudo-scalar η ∈ Λ4U of space-time,

η =
1

4!
φε̃abcdθ

a ∧ θb ∧ θc ∧ θd = θ0 ∧ θ1 ∧ θ2 ∧ θ3,

assumes this geometric isomorphism. In standard metric-affine formulations, φ is the square root of
the modulus of the metric determinant,

√
g while in purely affine connection formulations the density

comprises the Ricci tensor.
18 In quantum field theory, virtual particles are termed off shell because they do not satisfy the

relativistic energy-momentum relation while real exchange particles do satisfy this relation and are
termed on shell (mass shell).

19An example is the “more real” quadratic Dirac spinor Lagrangian, (QSL), a chiral real Hilbert-
Palatini action when the metric is real being an on-shell quadratic function of spinor one-forms,
without requiring that the space-time connection satisfy its equation of motion. QSL was originally
constructed with a sl(2,C)-valued connection and was generalized to a gl(2,C)-valued connection,
[35].
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the “gauge fixing” procedure within classical field theories. Even after applying the
Lorentz gauge fixing condition to a semi-classical U(1) gauge theory to allow only
observable transverse polarized Electromagnetic waves, still unphysical states of “ lon-
gitudinal”, and “time-like” modes in the E and B̂ field strengths need to be suppressed
by auxiliary constraints known as Ward identities. These constraints act to reduce the
traceable phase space of the realised fields. Indeed comparable constraints to these
resolved a key obstruction to the twistor description of gravitational waves: called the
googly problem, the requirement that a twistor description of right-handed interacting
massless fields (with positive, right-helicity), uses the same twistor conventions that
give rise to left-handed fields (negative helicity) was achieved by appending standard
ad-hoc Ward constructions within Penrose’s Palatial Twistor program, [25].

Coupled Graviton-Photon Constrained BF theory

Viewed as a constrained BF theory, Plebanski’s formulation lends itself to natural
generalisations as in the Einstein-Maxwell theory of Robinson, [14]that employs the
gauge group of gl(2,C) = sl(2,C)⊕C field valued variables, with the GL(2,C)-valued
SAB-forms being the primary field variable determined up to GL(2,C) transformations
on primed indices. With a GL(2,C)-valued connection, γAB the chiral Lagrangian for
Einstein-Maxwell reads

i

2
LS(S, α, γ) = fAB ∧ SBA +

1

2
ΞB

A
D
CSBA ∧ SDC . (9)

The scalar Lagrange multiplier field term, Ξ is needed ensures the basic two form
field variable is derived from a co-frame. Such a chiral formulation leads to complex
vacuum field equations for a complex metric with the real theory recovered only upon
imposing (by hand) reality conditions20 . As just discussed to ensure that the metric
is both real and Lorentzian the following “simplicity” conditions are required,

SAB ∧ SA
′B′

= 0, and SAB ∧ SAB + S
A′B′

∧ SA′B′ = 0.

Again, if Chirality of Lagrangian is to be preserved, such “Ward-Identity like” reality
conditions on the GL(2,C) valued two forms, SAB remain off shell.

Coupling of Chiral Charged Fermions

The Lagrangian for fermionic matter has a dependence on the connection so admits
Torsion contributions but nevertheless can be written as the sum of a semi-chiral
complex Lagrangian for vacuum General Relativity, LSC(θ,Γ), a complex (semi)chiral
fermionic matter Lagrangian, L 1

2
and a term, LJ2 that ensures the standard Einstein-

Weyl form of the field equations. Work such as this on SL(2,C) BF two style chiral
variational principles was extended to include various matter fields by Capovilla et al
and Pillin, [4] and is in the appendices for reference. Following through with their
general prescriptions we can effect the coupling of fermionic matter fields within an
extended GL(2,C) BF formulation. To do so we will need to formalise the idea of

20Again, the point of view to be taken here is that the symplectic metric ε̃AB of the spin bundle is
fixed once and for all and that the soldering form, (soldering form) σ̃AA

′
µ contains all the information

pertaining to the metric gµν on space-time, M itself. See alternatively Penrose [23].
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a weighted spinor density and present the transformation properties of a GL(2,C)
connection for the bi-vector ”graviton-photon” S-field. We gather together the spinor
density structures arising from a generlaised spinor’s transformation properties in the
appendices. We highlight that it will be the case that the coupling of the “graviton-
photon” to charged fermions naturally necessitates the restriction of the gauge group,
GL(2,C) to SL(2,C) ⊗ U(1) in order that final theory recovered is a real one. The
GL(2,C)-valued two-form chiral Lagrangian for Einstein-Maxwell with chiral spinor
field source is,

LSρ(S, γ, ρ, τ, α) = −2iLS + (SBA +
1

2
δBAS

E
E) ∧ ρA ∧ γDλB

+ τA
B
C ∧ SAB ∧ ρC +

3

32
λCλ

CρA ∧ ρB ∧ SAB.
(10)

Here γD represents the exterior covariant derivative associated to the gl(2,C)-value
connection γAB. The transformation properties Connection Potential Gauge are col-
lected int he appendices. The spin 1

2
fields are Grassman-odd objects and the chiral

spin 1
2

field quartic term has been included in order that the Einstein-Maxwell-Weyl
field equations can be obtained from a first order Lagrangian. The field equation aris-
ing from the variation of one form τABC = τ(ABC) means that the right-handed fermion

may be represented as a left handed one form according to ρC = θCC
′
λ̃C′ . These issued

are discussed extensively in [7] and a related discussion for spin 3
2

fields is included in
the discussion notes. Now since we require a real theory, γD is extended to Γ∇ as well
as to act on both primed and unprimed spinors. The field equation resulting from the
variation of γ is

γDηAA′
= Γ∇ηAA′ − ηAA′

(A+ Ā), (11)

where

Γ∇ηAA′ ≡ 3

4
JAA

′
and KABCC′ =

1

4
εC(AJB)C′ . (12)

It turns out that the correct charged Weyl equations written in terms of the connection
γAB := ωAB + δABA (and its complex conjugate) are obtained from the variations of
λ and λ̄,

γDBA′
λ̄A′ = 0 and

γDCD′λC = 0,

only when the gauge group is restricted to SL(2,C)⊗U(1) so that the the latter term
in (11) vanishes. We have then the (real) linear connection, associated to γD is then
the SO(1, 3) connection, Γab.

Scalar field coupling

With charged scalar fields, φ, π defined as complex valued spinor densities a chiral
Einstein-Maxwell-Scalar Lagrangian for (charged) scalar fields reads,

LS(S, α, γ) + 2iLH ,
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LH =
√
g{π̄µ(γDµφ)− π̄µπνgµν + πµ(γDµφ̄)}, (13)

for gl(2,C)-valued S-forms the configuration dynamical variables of the theory. Such
scalar fields, may be considered as charged Higgs or of Brans-Dicke dilaton type being
defined as spinor density-valued 0-forms, with φ having weight w = (1, 0) and its
complex conjugate, φ̄ having w = (0, 1). We have an action of an exterior covariant
derivative on a complex scalar field, φ with no spinorial indices upon which to contract.
In order to make explicit the primacy of the two form as the dynamical field to be
varied, SAB = ΣA

B + εABΣ in LH with the metric tensor gαβ derived as an ’on-shell’
solution to the Euler-Lagrange equations, we require at the outset expressions for the
metric density and its determinant soley in terms of these two forms. Their expressions
are analogous to those produced by Urbantke [31] for chiral sl(2,C)-valued Σ-self-dual
bivector forms,

√
ggαβ =

2i

3
εµρσν{SABαµSBCρσSCAβν −

1

4
SαµSρσSβν−

1

2
(SABαµS

B
AρσSβν + SABαµSρσS

B
Aβν + SαµS

A
CρσS

C
Aβν)},

√
g =

i

3
{SABαβSBAγδ +

1

2
SαβSγδ}εαβγδ.

With an arbitrary selected but preferred handedness chosen (self-dual forms, deter-
mined up to GL(2,C) transformations on primed indices) we see that we are construct-
ing the complex spinor-valued form equivalent of an oriented pseudo-tensor density.
With the determinant of the metric defined in terms of our fundamental bivectors
the (charged) scalar fields are complex valued weighted-spinor densities and may be
interpreted as Higgs or Brans-Dicke dilaton in nature.

Discussion

Integrability Hierarchy of Graviton-Photon plane waves

Both Maxwell and Einstein’s field equations are first order partial differential equations
in respective field strengths, f and Riemmanian Curvature ΩA

B = 1
2
RA

Bµνdx
µ ∧ dxν

2-forms comprised of gradients of potentials:

f [∂A]↔ Γ[∂g],

that are subject to Bianchi Identity Integrability conditions,

d∗f = 0↔ω ∇ΘAA′
= ΩA

B ∧ θBA
′
+ ΩA′

B′ ∧ θAB′
= 0.

With these satisfied, the position-space picture of the wave function of a massless
particle with helicity 2s, expressible in the 2-spinor form is

Γ∇AA′
ψAB..F = 0,

where we have total symmetry for each of the |2s|-index quantities,

ψAB..F = ψ(AB..F ).
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As was the case for the “photon” |s| = 1, (see 5) for helicity spin, |s| = 2 we have,

Cabcd ↔ ΨABCDεA′B′εC′D′ + Ψ̃A′B′C′D′εABεCD,

delivers us the weak-field (linearized) Einstein vacuum equations which are read as
(|s| = 1 or |s| = 2 equations) wavefunctions having a positive-frequency conditions
applied to them.21 With the decomposition (30) the exterior covariant derivative for
connection γ for an arbitrary spinor density, ψ endowed with complex weights (w, w̄)
reads,

γDµψ
A1..AkB

′
1..B

′
l

C1..CpD′
1..D

′
q

= {Γ∇µ + [w +
1

2
(k − p)]Aµ + [w̄ +

1

2
(l − q)]Āµ}ψ

A1..AkB
′
1...B

′
l

C1..CpD′
1..D

′
q

(14)

so that,
γDAA′

ΞABCD = 0 (15)

is our positive helicity linearised photon-graviton wavefunction.
In GR we think of our real fourth rank Weyl tensor, Cabcd or indeed it’s (anti)-self

dual C± version, evaluated at some event, as acting on the space of bivectors, ±Σab

at that event, like a linear operator acting on a vector space. The problem is then to
find eigenvalues λ and eigenvectors (’eigenbivectors’) Σab such that

1

2
Cab

cdΣ
cd = λΣab.

Multiplicities among the eigen-bivectors indicate an algebraic symmetry at the given
event and are determined by solving the resulting characteristic (quartic) equation.
The eigen-vectors are the principal null directions that are classified according to
six possible Petrov types characterised by the algebraic symmetry according to their
(anti)-self dual Weyl parts. With the GL(2,C)-valued S-form the characteristic equa-
tion reads as,

1

2
ΞAB

CDS
CD = λSAB for

ΞABCD = ΨABCD + εABφCD + φABεCD,

SAB = ΣAB + εABΣ

Two Polarization modes22 are carried by the Weyl tensor of GR, in which spacetime
distortion is in the plane perpendicular to the direction in which the gravitational wave

21 The Ψ-part would then describe the left-handed (s=-2) component of the particle’s wave function
while Ψ̃ the s=2 component. As we did for fab we insist on Cabcd being real so that Ψ̃A′B′C′D′ =
Ψ ? ?
ABCD, that is schematically sl(2,C)↔ ε2 ↔ sl(2,C) through the application of the Lie dual twice

to obtain the classical R solutions of the field equations. The part of Cabcd involving C− = Ψ is called
the anti-self-dual part. Being a spin-2 particle, means the graviton need only spin half a revolution
in its spin (symplectic) space to mark out its locus of indistinguishability.

22One new report, LIGO publications tests for more than the two “tensor” polarisation modes that
can be carried by Ψ4. The geometry associated with plane-fronted transverse gravitational waves of
the sort that LIGO are looking at are all Petrov type N solutions with vanishing Newman-Penrose
scalar ρNP = −na;bm

am̄. Indeed the Weyl scalar Ψ4 describing the outgoing gravitational radiation
(in an asymptotically flat spacetime) reads as

Ψ4 =
1

2

(
ḧθ̂θ̂ − ḧφ̂φ̂

)
+ iḧθ̂φ̂ =: −ḧ+ + iḧ× ,

in which the h+ and h× are the “plus” and “cross” polarizations of gravitational radiation and
double dots represent double time-differentiation. These types of waves are closely analogous to our
understanding of electromagnetic waves: the gravitational wave fronts move along the congruence of
null curves in an irrotational (twist)-free way.
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travels. The “vector” (1, 0) modes could be accomodated in the spinor connection
GL(2,C)-valued 1-form,

γab ↔ γabµdx
µ = γABε

A′
B′ + γA

′
B′εAB,

with the spinor term χAB from Cartan’s second structural equation, 4 and in 33 arising
from the presence of non-zero torsion for the sourceless far-field solutions pertinent to
gravitational waves in which the Ricci tensor is zero Φ = 0. The deployment of
additional constraints akin to those of the Ward Identities for Yang-Mills theories will
be required for our wave bivector with principle null direction, αB

ΞABCDS
CD = (αAαBαCαDS

CD
µν + χD(ASB)

D
µν)dx

µ ∧ dxν .

While from 34 we see there are 10 independent components of Weyl curvature encoded
in 5 complex components, Ψ and six independent components of the Faraday-Maxwell
2-form (electromagnetic field strength tensor) fab. The latter encoded in three com-
plex Maxwell-Newman Penrose scalars, φ0 = fabl

amb, φ1 = 1
2
fab(l

anb + m̄amb), φ2 =
fabm̄

anb. We note the pnds αB as such represent both propogating Petrov type N space-
time with EM waves.23 Indeed this is as it should be: the gravitational plane wave
has a 5-dimensional group of isometries just as the plane electromagnetic wave has a
5-dimensional group of symmetries. Of all the Ricci flat metrics with symmetries of
dimension greater than or equal to 4, (as given by Petrov) there is only one such class
of solutions with the same 5-dimensional group isomorphic to the symmetry group of
the electromagnetic field.

Lanczos Potential for linearised Gravitational Field

In the context of a Metric-“Affine” field theory of gravitation we have seen that C±

“carries” the gravitational wave. Issues with gauge fixing and finding a source potential
for the (far-field linearised) gravitational wave (solution) have been treated by Lanc-
zos through his construction of a 3-tensor Labc, the potential for the Weyl conformal
tensor Cabcd. We summarise the spinor treatment reviewed in Edgar, A. Hoglund (see
references therein). The argument is that any candidate symmetric 4-spinor XABCD

admits locally a solution to

XABCD = 2Γ∇(A
A′
LBCD)A′ , (16)

where LBCDA′ needs to be symmetric in all unprimed indices according to the satis-
faction of the “Lanczos algebraic gauge”,

Lab
b = 0, (Algebraic-Gauge)

The brackets in 16 can be omitted by further fixing a “Lanczos differential” gauge

Lab
c
;c = 0↔Γ ∇AA′

LACDA′ = 0. (Differential-gauge)

23 For examples of approaches that capture electromagnetic and gravitational field vibrations in
a Clifford-spinor setting see quadratic spinor for Einstein-Maxwell. For a unified gauge potential
approach to the Einstein Maxwell equations and for an approach that uses the Dirac spinor repre-
sentation of the the Clifford algebra in a space-time admitting Torsion see Rocha.
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We can require further that XABCD satisfies a Bianchi-type equation with source cur-
rent, I of the form,

Γ∇AA′XA
BCD = JBCDA′ .

The LBCDA′ , in Lanczos algebraic gauge but arbitrary differential gauge, then satisfies
the wave equation,

�LBCDA′ − 3Γ∇(B|A′|
Γ∇EZ′

LCD)EZ′ − 6ΦAF ′A(BLCD)
AF ′

+
1

4
RLBCDA′ = IBCDA′ ,

(Algebraic-Wave)
In vacuum, so that ΦABA′B′ = 0 = R and with both Lanczos gauges chosen, the wave
equation24 takes the very simple D’Almbertian form

�LBCDA′ = JBCDA′ . (Alg+Differential-Wave)

For the Maxwell-Faraday potential we have a field, f satisfying df = 0, d∗f = j as a
Bianchi identity for f = dA of a gauge potential A′µ = Aµ +∂µΛ. That is, a linear field
equation satisfying,

Γ∇AA′
φAB = 0.

While its field integrability hierarchy is gauge independent. Only with gauge fixing
is the Lanzcos potential Integrability hierarchy comparable for GR. For GR we have
the trace-free Weyl tensor Cabcd = C[cd][ab], C[abc]d = 0, Cabca = 0, satisfying the vacuum
Bianchi identities: Γ∇[aCbc]de = 0 delivering us a particular weak-field (linearized)
Einstein vacuum wave form solution,

Ψ4 := Cαβγδn
αm̄βnγm̄δ.

Given the symmetries of the extended curvature spinor both the Lanzos algebraic and
differential gauges need to be fixed

ΞABCD(= ΨABCD + εABφCD + φABεCD) = 2γDAA
′
LBCDA′ ,

for a Lanzcos “potential” for gravitional-electromagnetic waves to satisfy (Alg+Differential-
Wave). And only if integrability of the generalised Weyl spinor, 34 Bianchi-type equa-
tion is applied,

γDAA′αAαBαCαD = ĨBCDA′ .

The necessity for both algebraic and differential gauge fixing muddies the integrability
hierarchy picture just for linearised wave solutions and begs the question what are the
meanings of these L- “potentials” with respect to the S-bivector forms?

Bel-Robinson Entropy for combined gravitational-em fields

“Maxwell’s”-stress energy tensor of pure electro-magnetic radiation, [37] is

T emab =
1

4
(faef

e
b +∗ fae

∗f eb),

and is formally similar to the Bel-Robinson super-energy tensor, its gravitational equiv-
alent written as,

T gabcd =
1

4
(CeabfC

e
cd
f + ∗Ceabf C

?e
cd
f ), (17)

24 (� =Γ ∇Γ
a∇a) is the d’Alembertian differential wave operator in four-dimensional spacetime.
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where C?
abcd = 1

2
ηabefC

ef
cd is the Lie Hodge-dual of the Weyl tensor and ∗Cabcd =

1
2
ηefcdCab

ef is its Hodge-dual25. As such, it is symmetric, tracefree, and covariantly
conserved in the vacuum. We will consider the spinor equivalent of a generalised Weyl-
Maxwell curvature super gravitation-em field in the discussion. In two components
spinors the Bel-Robinson tensor, (17), simply reads,

Tabcd ↔ ΨABCDΨ̃A′B′C′D′ ,

and has been proposed as the covariant (if observer-dependent) object to describe the
Entropy of the gravitational field in a [Gravitational Entropy Proposal]. T abcd and
its divergence, ∇aT

a
bcd arise soley as a consequence of the Integrability conditions

of Einstein’s equations, that is the Bianchi identities and their contractions. The
components of the Bel-Robinson tensor, T abcd have dimension l−4 so that 1

β2T
a
bcd for

β = 8πG
c4

has dimensions of the square of energy-momentum. As such when Einstein’s
equations are satisfied this motivates taking its (trace-free) ’square-root’. For the
gravitational wave26 case, Ψ4 = Cabcdm̄

albm̄cld this results in,

tab = |Ψ4|nanb,

Within a non-chiral GL(2,C) spin-density formalism akin to the program of Smolin
et al, [38] we note the combined entity

T̃abcd ↔ ΞABCDΞ̃A′B′C′D′ ,

offers itself naturally as the entropy of the combined propogating γ connection fields.

Bundle Geometry Hierarchy

A Garrett Lisi, [1] argues for a modified BF theory action built ofa collection E8-
valued 2-forms and anti-Grassmann 3-form Lagrange multiplier fields, defined over a
four dimensional base manifold. There is a natural joining of unified gravitational
spin connection and the frame-Higgs while the magnitude of the Higgs,

√
(φ2), is a

conformal factor that can be absorbed into the magnitude of the frame. Lisi proposes
a form of the action based on an approach to writing general relativity as a gauge
theory, invented by MacDowell and Mansouri in which the metric and local Lorentz
connection are unified in a larger deSitter connection, but the action is only invariant
under a local Lorentz subgroup. This has echoes of the foregoing but contact with Lisi
work is made harder with his extensive use of the Clifford product.27

25While the Equivalence Principle effectively intertwines the Hodge structure on the space-time
(indexed by µ) algebra,

−F =− Fabθa ∧ θb = (Fab + i∗Fab)σaµσbνdxµ ∧ dxν = FµνΣµν + iFµνηµν

with the Hodge-Lie ? structure on freely the falling (Lorentzian, indexed by a) gauge algebra,

F− = (Fab + iF?ab)σaµσbµdxµ ∧ dxν

we should be careful to distinguish the two.
26 Ψ4 is the only non-zero Weyl (complex) scalar for na chosen to be aligned with the principal

null directions along which a plane fronted wave propogates.
27By admitting a metric, such a product can be formed between multivector aggregates α and β

(such as between θ and Σ, say) within the one algebra, ΛU . For example, in the notation of the
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Postscript: Susceptibility of Hodge Duality

In our present material universe, of the four Maxwells equations only Faradays and
modified Amperes laws are independent. Free charges and currents source the four
electric and magnetic (resp.) fields and fluxes E,D and H,B which are neatly gath-
ered as tensor-valued two forms, F and G. The constraining system of equations
that describe the behaviour of matter under the influence of these fields, known as
the Constitutive (having the power to establish or give organised existence to some-
thing) relations. In the presence of external electric (magnetic) fields any permeated
substrate susceptible medium becomes polarized (magnetized) such that the electric
flux density of the medium is characterised by a polarisation vector indicating the
dipole moment per unit volume as the displacement current, D = ε0E + P . Similarly
the magnetic flux density in a magnetic medium is B = µ0H + M for magnetisation
vector, M captures the magnetic dipole moment per unit volume. In the absence of
any material (i.e. in a vacuum) the relations are given by D = ε0E,B = µ0H and
whose invariant form is written using the Hodge dual, G = χ(?)F =? F the final
equality being true because the vacuum susceptibility is assumed to be trivial. The
end game eon is thus characterised by a phase change in which the universe again once
again exhibits conformal symmetry. The polarisable spatial dielectric of our present
epoch is bookended between conformal spaces of trivial susceptibility with Electric
and Magnetic fields and fluxes wholly intertwined by the conformally invariant Hodge
dual operator. The forgoing perhaps invites the following questions:

1) Is the gauge freedom that we can use to construct our Field strengths from
an equivalence class of indistinguishable potentials only apparent Now, within this
present material-immaterial epoch? That such Gauge ambiguity within classical field
theories is nothing more than a misguiding mathematical artefact of a purer eon.

2) What are the timely (and timeless) quantities of ontological interest in a semi-
classical theory of gravito-electrodynamics?

3) Just prior to the arrival of total radiation dominance of the universe at its
conformal boundary, consider the universe of two material charged fermions and the
last lone black hole. Consider fermions, as the only particle entities (in a non quantum
theory) from which all fields arise. Ask then to what potential or field curvature object
would we most cogently attribute the Ahranhov -Bohm effect on such a curved space-
time?

Appendices

Appendix 1: Spinor-density structures

The transition functions of the GL(2,C) bundle over M are represented by complex

non-singular 2 × 2, matrices (ξÃB) and contain 8 real parameters. The inverse and

conjugates are denoted by, (ξ−1)B̃
A, ξÃ

′
B′ and (ξ−1)B̃′

A′
, their determinants are given

Clifford system we can write Maxwell’s equations as a single quaternionic equation(
∂t +∇

)
· F =

ρ

ε
− µcJ.

in terms of a real Clifford28 algebra-valued field, F = E + jcB̂ for a wave that propogates at speed,
c = 1√

εµ .
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by
f 2 := ξ = det(ξAB), f̄ 2 = det(ξA

′
B′).

A generic spinor density transforms from (say) a null (A) to orthonormal (Ã) frame
under GL(2,C) according to,

ψÃB̃
′

C̃D̃′ = (f)2w(f ′)2w̄(ξ−1)C̃
CξÃ

′
A(ξ−1)D̃′

D′
ξB̃

′
B′ψAB

′
CD′ . (18)

The independent complex numbers (w,w) are the weight and anti-weight that
characterise a generic field, ψAB

′
CD′ whose complex conjugate is ψA

′B
C′D and carries

weights (w̄′, w′). The (familiar SL(2,C)-valued spinors are objects that transform with
vanishing weights so that δAB and δA

′
B′ are numerical spinors with the same numerical

value in all spinorial frames. Symplectic metrics are numerical spinor densities with
εAB having weight w = +1 transforming according to,

εÃB̃ = (ξ−1)Ã
C(ξ−1)B̃

DεCD = (f 2)(L−1)Ã
C(L−1)B̃

DεCD.

The other Levi-Cevita symbol densities have respective weights,

w w̄

εAB 1 0
εAB -1 0
εA′B′ 0 1

εA
′B′

0 -1

and we are wary that raising (lowering) of an unprimed (primed) index increases
(decreases) the weight (anti-weight) by one. A hermitian object is such that,

(ψA1...AkB
′
1..B

′
k)∗ = ψA1...AkB

′
1..B

′
k ,

holding in all spinorial frames only if the basic weights are related w′ = w̄ ↔ w̄′ = w.

Appendix 2: Metrical Gauge to Spin Group Morphisms

In order for θAA
′

to be treated as a spinor density under GL(2,C) we must assign it
weights such that w̄ = w. To see this note that the transformation of θAA

′
to a new

spinorial frame means:

θÃÃ
′
= ξwξ

′w′
ξÃAξ

Ã′
A′θAA

′
= ξwξ

′w′
ξÃAξ

Ã′
A′σAA

′

a θa,

= ξwξ
′w′
ξÃAξ

Ã′
A′T−1

ã
aσAA

′

a θã (19)

for θa = T−1
ã

aθã and (T ãa) ∈ SO+(1, 3) such that det(T ãb̃) = 1 and T 4̃
4̃ ≥ 1 defin-

ing the proper orthochronous metrical ambiguity in the forms θ through ds2. The
homorphism29 between GL(2,C)[∞2 ↔ 1]SO+(1, 3) is effected by demanding that,

σÃÃ
′
= σÃÃ

′
a θa, so that

T ãa = −1

2
ξwξ

′w′
σãÃÃ′ξ

Ã
Aξ

Ã′
A′σAA

′

a , (20)

for σÃÃ
′

a the standard Pauli matrices. This is the case if (ξ)2w+1(ξ′)2w′+1 = 1, which
for arbitrary complex ξ holds for T ãa if w = −1

2
= w′(= w̄) as advertised,

29A given SO+(1, 3) may be induced by an (∞)2 of GL(2,C) transformations, leaving two real pa-
rameters of GL(2,C undetermined and to be associated to electro-magnetic gauge potential freedom.
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w w̄ w w̄

θAA′ −1
2
−1

2
SAB -1 0

θAA′ −1
2

1
2

SAB 0 0

θA
A′ 1

2
−1

2
SAB 1 0

θAA
′ 1

2
1
2

SA
′B′

0 -1

Finally we note that since,

f 2 = ξ we have LÃA :=
1√
ξ
ξÃA with det(LÃA) = 1, (21)

we have then that (20) realises the isomorphism SL(2,C)(2↔ 1)SO+(1, 3) by

T ãa = −1

2
σãÃÃ′L

Ã
AL

Ã′
A′σAA

′

a , (22)

Appendix 3: Connection Potential Gauge Invariances

This work is distinct from that which has tried to relate Maxwell to linear connections
which were non-metric or have torsion, [3]. We define the Ricci forms30 according to

γab := γabcθ
c = −σaµ;νσb

µdxν ∈ Λ1U.

Here we will use the soldering form and the GL(2,C) connection to construct a real
linear connection,

γab = ωab + δab(A+ Ā). (23)

Consider the pair of linearly independent contravariant spinors,

(kA, lA) ≡ (eA1, e
A
2) =: eAA.

For e := det(eAA) = 1
2
εABe

A
Ae

B
B 6= 0 of density weight (w, w̄) = (1, 0) we have for

numerical Levi-Civita symbols that are not invariant under GL(2,C),

εABe
A
Ae

B
B = eεAB,

from which we can define the covariant basis

eA
A = (e)−1εASe

S
Sε

AS,

so that we have for example eA
SeBS = δBA. We define our spinorial connection (in

fact can be defined independent of basis) as;

γABµ := −eAS(γDµ − ∂µ)eB
S = +eB

S(γDµ − ∂µ)eAS. (24)

30We fix our definition of tensorial weight by considering the scalar components of tensorial density
(of real weight wT ) with respect to a local co-ordinate map

T a...b... := [det(emµ)]wT eaαeb
β ... Tα...β... ,

stating that the tensor density of weight wT = 1 is εα1..α4
has scalar (numerical) components εa1..a4 .
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Its general form is implicit in

γDµψAB
′...

CD′... = {∂µ + wγSSµ + w̄γS
′
S′µ}ψAB

′...
CD′...

+ γASµψ
SB′...
CD′... − γSCµψAB

′...
SD′... + γB

′
S′µψ

AS′...
CD′... − γS

′
D′µψ

AB′...
CS′... + ... (25)

As (24) transforms as a covariant vector we define γAB := γABµdx
µ ∈ Λ1U transform-

ing as

γÃB̃ = ξÃA(ξ−1)B̃
BγAB + ξÃSd(ξ−1)B̃

S, (26)

which given that

ξS̃Sd(ξ−1)S̃
S = −dln(ξ) implies γS̃ S̃ = γSS − dln(ξ). (27)

Accordingly we can decompose our connection into symmetric and anti-symmetric
parts

γABµ = γ(AB)µ + γ[AB]µ,

:= ΓABµ +
1

2
εABγµ. (28)

Due to symmetry of ΓABµ we have ΓSSµ = 0 so that γSSµ = γµ and γS
′
S′µ = γ′µ and

according to respectively (27) and (26) we have the forms ΓAB defined up to SL(2,C)
transformations induced by GL(2,C) according to the affine representation,

γ̃ = γ − dln(ξ) and ΓÃB̃ = LÃA(L−1)B̃
BΓAB(ε) + LÃSd(L−1)B̃

S, (29)

where LAB(ε) belongs to SL(2,C) and LAB(0) = δAB. Therefore γµ is a covariant
vector defined up to some complex gauge and ΓAB are defined up to SL(2,C) induced
by GL(2,C) according to (21). We now elaborate (25) distinguishing γD from Γ∇
according to

γDµψ
A1..AkB

′
1..B

′
l

C1..CpD′
1..D

′
q

= {∂µ + [w +
1

2
(k − p)]γµ + [w̄ +

1

2
(l − q)]γµ}ψ

A1..B′
1..

C1..D′
1..

+ ΓA1
Sµψ

S...B′
1..

C1..D′
1...
− ΓSC1µψ

A1...B′
1..

S...D′
1...

+ ...

= {Γ∇µ + [w +
1

2
(k − p)]γµ + [w̄ +

1

2
(l − q)]γµ}ψ

A1..B′
1..

C1..D′
1..

(30)

and identify γµ with the complex electromagnetic potential31, A = Ă+ Å written in

terms of real Ă and pure imaginary Å parts by noting the following identification

γµ := −ie0

2~
Aµ = −ie0

2~
(Ăµ + Å)µ. (31)

31Maxwell’s equations are written as,

∗df = (4πi)j or equivalently δf = 4πj for co-differential, δ := −i∗d∗

The self-dual complex 2-form Faraday field, ∗f = f is harmonic (so that f = −dA ∈ Λ2) in the sense
that it satisfies both df = 0 and δf = 0.
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We have then the GL(2,C) decomposition of the connection of dimension32 (length)−1

γAB = ΓAB + δABA, for complex A := −ie0

2~
A.

If one does not assume that A is u(1)-valued the real part is non-zero so the real
linear connection, (23) will not be metric. The reality of the Maxwell field arises when
restricting the gauge group, GL(2,C) to SL(2,C) ⊗ U(1) as the latter term in (23)
then vanishes when A is required to be u(1)-valued and the Maurer-Cartan form is
pure imaginary for real scalar potential Λ as

A(Λ) = e−iΛdeiΛ = idΛ =: iĂ and Ā = −iĂ

Interestingly, as we will see with fermionic coupling, this becomes a necessary condition
when charged fermionic matter as added according to the prescription of [7] and [8].
If we had rather applied the natural axioms of a covariant exterior derivative such as

γDεAB = −QεAB,
γDεAB = QεAB,

for Q a spin-weightless complex covariant vector, so that

γDεAB = DεAB − 2εABA, for A =
1

2
Q.

Appendix 4: Semi-Chiral Lagrangian for Fermions

The Lagrangian for fermionic matter has a dependence on the connection so admits
Torsion contributions but nevertheless can be written as the sum of a semi-chiral
complex Lagrangian for vacuum General Relativity, LSC(θ,Γ), a complex (semi)chiral
fermionic matter Lagrangian, L 1

2
and a term, LJ2 that ensures the standard Einstein-

Weyl form of the field equations.

LSC(θ,Γ) = iθAA′ ∧ θBA′ ∧ FAB,

L 1
2
(θ,Γ, λ, λ̃) = +ηAA

′ ∧ λ̃A′λA,

LJ2(λ, λ̃) =
3

16
λAλ̃A′λAλ̃A

′
,

LTot = LSC + L 1
2

+ LJ2 .

The λA(λ̃A′) are the left (resp. right)-handed zero forms. The theory uses only the
anti-self dual connection, D (which does not act on tensors, so for example,

DθAA
′
= dθAA

′ − θBA′ ∧ ΓAB,

but is complete and it turns out, (by varying KA
B), that the real source current,

JAA′ = λAλA′ = −JA′A supports only the axial part of the torsion of ΓAB, written in
terms of the contorsion form as,

32e0 is a real constant of dimension charge and the dimensions of the potential, Aµ are e0
length so

that dim(Aµ) = − i
2

1
137

1
length .
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KAB = −1

4
JC′(AθB)

C′
.

Because ultimately the real theory is of interest (where λ̃A′ = λA and θ is hermitian)
it proves useful to extend D to ∇. Although it is argued that the spin 1

2
field variables

can be taken to be either Grassman [or complex]-valued, in fact the use of complex
spin 1

2
fields leads to a non-standard energy-momentum tensor which includes quartic

spin 1
2

fields.

Appendix 5: Decomposition of Generalised Weyl Curvature
Spinor

The spinor with the interchange symmetry ΞABCD = ΞCDAB used as a multiplier
field in the GL(2,C)-form formulation of complex Einstein-Maxwell, [14] has a partial
decomposition of

ΞABCD = Ξ(AB)(CD) +
1

2
{εABΞE

E
(CD) + Ξ(AB)E

EεCD}+
1

4
εABεCDΞE

E
F
F . (32)

The spinor aABCD := Ξ(AB)(CD) possesses the symmetries of XABCD, the curvature
spinor [24] for an sl(2,C)-valued connection with Torsion and Cosmological constant
term,

XABCD = ΨABCD + (εBCεAD + εBDεAC)Λ + (εCBχAD + εBAχCD + εDBχAC). (33)

With the additional interchange symmetry aABCD = aCDAB (that arises from the even
number Grassman structure of the bivectors of space-time) this means that its Torsion
contributions are zero, χAD := 1

6
aH(AD)

H = 0 so that XiABCD decomposes as,

ΞABCD = ΨABCD + 2εB(Cε|A|D)λ+ εABφCD + φABεCD + 2εABεCDk, with

ΨABCD := a(ABCD), λ :=
1

6
ΞHE

EH , k :=
1

8
ΞE

E
F
F , φAB := Ξ(AB)E

E.

Given further, ΞE
E
F
F = −2

3
ΞAB

AB, we have that

ΞABCD = ΨABCD + 2εB(Cε|A|D)λ+ εABφCD + φABεCD. (34)

The use of self-dual gauge freedom is used and k is chosen to be −1
2

then φ̄A′B′ is the
complex conjugate of φAB and the Faraday field, f is real. If in addition we insist that

ΞA
A
B
B = ΨA

A
B
B + 2εA

BεABλ+ εAAφ
C
C + φAAε

B
B = ΞA

B
B
A

then we arrive at the equations of motion with λ = 0.

References

[1] Garrett Lisi, https://arxiv.org/pdf/0711.0770.pdf

[2] Ezawa K, Prog. Theor. Phys, 95 (1996), 863-882.
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