
Python by Numbers

Number Theory as a Branch of Data Science

Lee McCulloch-James

Copyright © 2023 Lee McCulloch-James
PUBLISHED BY PUBLISHER

BOOK-WEBSITE.COM

Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the
“License”). You may not use this file except in compliance with the License. You may obtain a
copy of the License at http://creativecommons.org/licenses/by-nc/3.0. Unless required
by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.

First printing, March 2013

http://creativecommons.org/licenses/by-nc/3.0

Contents

I Part One: Foundations

1 Foreword . 11

1.1 Prologue 13
1.2 Number Nomenclature 14

2 Number Theory as a Data Science . 17

2.1 Modular Arithmetic 21
2.1.1 Clock Arithmetic and Encoding . 21

2.2 Arithmetic Functions and Algorithms 23
2.2.1 Divisor, p|n . 23
2.2.2 Number and Sum of Divisors Functions τ(n), σ(n) . 24
2.2.3 Euclid’s Algorithm for finding the GCD of Multiple Numbers 24
2.2.4 Euler’s Totient Function φ(n) . 25
2.2.5 Least Common Multiple . 29

2.3 The Group Un of Invertible Integers Mod n 32
2.3.1 Role of Un in RSA . 33
2.3.2 Riemann Zeta Function, ζ (s) . 36
2.3.3 Euler’s Product form of Riemann Zeta function . 36

3 Composite Numbers . 39

3.1 Composites as p-rectangles, p > 1 42
3.2 The Rectangular Composites 45
3.2.1 Bubble chart of Semi-prime Totients . 46
3.2.2 Semi-prime Perimeter to Area ratios . 49

3.2.3 Divisor Density Ratio . 50

3.3 Highly Composite and Super abundant Numbers 51
3.3.1 Roundness . 56

3.4 Fermat’s Little Theorem 58
3.4.1 Carmichael Numbers as Odd Pseudoprimes . 60
3.4.2 Three-Factor Carmichael Numbers . 61
3.4.3 Nearly Square number maneuvers . 62
3.4.4 Oblong Numbers . 67
3.4.5 Cumulative sum chart of Oblong Numbers . 72

3.5 Tiled Rectangles and Electrical Circuits 74
3.5.1 filling rectangles by divisor squares . 75

3.6 Number Classification 79
3.6.1 Ranking Metrics . 83

3.7 Semi-Perfect Numbers and the Knapsack Problem 85

4 CuboidNumbers . 87

5 Prime Numbers . 89

5.1 Partitioning the primes 91
5.1.1 Quadratic generators . 92
5.1.2 Mersennes Prime Horseplay . 93

5.2 Prime Epigraphing 95
5.2.1 Fermat-Gauss Prime split . 96
5.2.2 Twin primes . 97
5.2.3 Ulam Spiral for Number Persistence . 98
5.2.4 Ulam Spiral for Zap Depth . 98
5.2.5 n-ply Ulam spirals . 99
5.2.6 Perimeter-Area ratio of f-plies . 101

5.3 Complex Gaussian Integers and Primes 103

5.4 Prime Spiral Polar Rays 107

5.5 Magic Squares with an Ulam twist 109

5.6 Perfect Numbers 111
5.6.1 Perfect-like Miscelania . 112
5.6.2 Snaking Divisors . 114
5.6.3 Diversity Density Ratio revisited . 118

5.7 Density of Primes in Residue Classes 119
5.7.1 Prime races . 119

5.8 Euler’s Quadratic Prime Generator 121

5.9 Helgott’s Quadratic Prime Generator Formula 122
5.9.1 Plotting the Quadratics . 123

5.9.2 Significance of
√

163 . 124

5.10 End Tables 126

6 Cyclicality . 131

6.1 Arithmetic and Metric of p−adic Numbers 131
6.2 Cyclicality of the Reptend Primes 134
6.2.1 Remainders of Powers of Ten by 7 . 135
6.2.2 Reptend Primes in Base-2 . 135

6.3 Binary representations of Rationals 140

6.4 Sum of
(1

2

)2n 142
6.5 Orbits of n-cycles 143
6.5.1 shift Map . 144
6.5.2 Spider diagrams of n-cycle orbits . 145

6.6 Primitive Roots and Base-b Reptend Primes 147
6.7 Bakers Folding Interleaving Chaotic Map 148
6.8 Benford’s Law 149
6.9 Aliquot Sequences 152

7 Polynomial Sequences . 153

7.1 Worpitsky triangle 155
7.1.1 Sum of 1 j + . . .+n j . 156
7.1.2 The Pyramid number of the Twelve Days of Christmas presents 158
7.1.3 Polynomial Regression . 161

7.2 Matrix form of linear systems 162

II Part Two: Foot hill Explorations

8 Fibonacci Miscellany . 169

8.1 Fibonacci primes 171
8.2 Fibonacci Oblongs 173
8.2.1 Aperiodic Tilings from Digital Fibonacci Sequences and Ulam Spirals 176

8.3 Self-Enumerating Attractor Sequence 182
8.4 head throwing 182

9 Perspective Compositions . 183

9.1 Lemoine’s conjecture 183
9.2 Goldberg Variations 185
9.3 Compound Numbers written as sum of two Squares 186
9.3.1 Goldberg Conjecture . 188

10 Triangulation . 189

10.1 Prime Stratification with Polygonal Numbers 189
10.2 Geometric Structures under Klein’s Erlangen Program 189
10.3 Figurative Polygon Numbers 192
10.3.1 Triangle Number Sum and Difference Quartets . 192
10.3.2 Primitive Triangle Square pairs . 195

10.4 Figurative speaking Recipricols 196
10.4.1 recurrence relations . 198
10.4.2 Gauss’s three triangle Theorem . 199
10.4.3 Polygon number Ulam spirals . 202

10.5 Google Sheets Implementation of Polygon-Prime stratification 202
10.6 Python Implementation of Polygon-Prime stratification 203
10.6.1 Transformation to Log-Log Plot . 205

11 Exageration . 207

11.1 Double Factorial and Prime Divisibility 207
11.1.1 Euler, e as geometric mean of primes . 212
11.1.2 Wilson’s Formula . 213

11.2 Historical Significance of Harmonic Series and Logarithms 216
11.2.1 Euler constant, e . 217
11.2.2 Double Factorial . 218

12 Irrational Analysis . 219
12.0.1 Bernoulli . 219
12.0.2 polynomials . 220

12.1 Euler, e as a continued fraction 221
12.2 Pi 223
12.3 Continued fractions form of surds 223
12.3.1 e and π as Continued Fractions . 226

12.4 Square root difference of squares 227
12.4.1 Solving Recursive Relations via Linear Algebra . 227

12.5 Quadratic generator of silver ratio powers 231
12.6 Golden Ratio Quadratic Coefficients as Lucas Numbers 232
12.7 Metallic Rationals 233
12.8 Metallic Unit Area Right Triangles 236

13 Unlikely Unreality of the Ramadunjan being Number 239

14 The ABC Conjecture . 243

14.1 The co-prime ABC Triplet 243
14.2 The ABC Conjecture 243
14.2.1 Radical of a Number . 244
14.2.2 The co-prime ABC Triplet . 244

III Part Three: Higher Altitude Explorations

15 Combinatorics . 249

15.1 Sam Lloyd Problem 249
15.2 Placing Distinct Balls In distinguishable Boxes 258
15.2.1 Code Workflow . 259

15.2.2 Generator formulae for r balls in n boxes . 259

15.3 Statistical Ensembles 261

15.4 Optimisation models 263

15.5 The Secretary Problem 265
15.5.1 Exploration and Exploitation . 265
15.5.2 Automated Secretary Problem with Optimal Stopping 265
15.5.3 Balancing Exploration and Exploitation . 267

15.6 The Enigma Machine and its Plugboard Feature 267

15.7 Number of Triangles on an n×n Grid 271
15.7.1 Perimeter to Area ratio Weighted-least squares . 274
15.7.2 log-plot of frequency of triangle types up to n . 274
15.7.3 Factor Divisor Combinatorics . 276

15.8 Linear Algebra and Dimensional Analysis 278
15.8.1 Mass of Universe . 278
15.8.2 Planck Mass . 280
15.8.3 Weinberg’s Mass . 283
15.8.4 Recursive formula . 286
15.8.5 interpolating approaches . 287

16 Giving a Toss . 289

16.1 Win Loss Frequency 289

16.2 Win-Loss distribution of Coin-Tossing 290

16.3 Sticking it to Pascal 291
16.3.1 Bernoulli Trials and the Distribution of Runs of Heads . 291
16.3.2 Augmented Pascal triangle . 291

16.4 Coin Toss clustering on a table 293

17 Integer Lattice problems . 299

17.1 Surd diagonals drawn on a lattice 299

17.2 Circumscribing polygons 302

17.3 Circumscribing and Inscribing Polygons 302

17.4 Perimeter-to-Area Ratio 302

17.5 Tournaments in Directed Graphs 304

17.6 Triangles inscribed in Circles 307
17.6.1 Further analysis . 309

17.7 spiralling 315

17.8 chapter end notes 315

18 Diophantine Equations . 317

18.1 Using Bezout’s Identity to Solve Diophantine Equations 318
18.1.1 Lattice Point Diophantinism . 321

19 Determination . 323

19.1 Pythagorean Triples 323
19.1.1 Generating Pythagorean Primitives . 325
19.1.2 Pythagorean scatterplots . 327
19.1.3 Annotated log-log plots . 329

19.2 Hyperbolic Construction of Pythagorean Triples 330
19.2.1 Diophantine Equations and Modular Functions: . 331

19.3 Congruent Numbers and Square-Free Conditions 335
19.3.1 Congruent Numbers and Elliptic Curves . 336

20 Combinatorial Differential geoemetry . 341

Bibliography . 343

Books 343
Articles 344

Index . 345

I 1 Foreword . 11
1.1 Prologue
1.2 Number Nomenclature

2 Number Theory as a Data Science . . . 17
2.1 Modular Arithmetic
2.2 Arithmetic Functions and Algorithms
2.3 The Group Un of Invertible Integers Mod n

3 Composite Numbers 39
3.1 Composites as p-rectangles, p > 1
3.2 The Rectangular Composites
3.3 Highly Composite and Super abundant Numbers
3.4 Fermat’s Little Theorem
3.5 Tiled Rectangles and Electrical Circuits
3.6 Number Classification
3.7 Semi-Perfect Numbers and the Knapsack Problem

4 CuboidNumbers . 87

5 Prime Numbers . 89
5.1 Partitioning the primes
5.2 Prime Epigraphing
5.3 Complex Gaussian Integers and Primes
5.4 Prime Spiral Polar Rays
5.5 Magic Squares with an Ulam twist
5.6 Perfect Numbers
5.7 Density of Primes in Residue Classes
5.8 Euler’s Quadratic Prime Generator
5.9 Helgott’s Quadratic Prime Generator Formula
5.10 End Tables

6 Cyclicality . 131
6.1 Arithmetic and Metric of p−adic Numbers
6.2 Cyclicality of the Reptend Primes
6.3 Binary representations of Rationals

6.4 Sum of
(1

2

)2n

6.5 Orbits of n-cycles
6.6 Primitive Roots and Base-b Reptend Primes
6.7 Bakers Folding Interleaving Chaotic Map
6.8 Benford’s Law
6.9 Aliquot Sequences

7 Polynomial Sequences 153
7.1 Worpitsky triangle
7.2 Matrix form of linear systems

Part One: Foundations

1. Foreword

Trying to learn to drive at an older age, after years of being a passive passenger has echoes of my
academic journey ambling as I have of late into number theory in a very pedestrian sense. As
someone who had never learned to drive during my early years, it was disappointing to discover
that the road, previously but a backdrop to my idle thoughts as I gazed out the window, as a driver
was a canvas to express the secret garden of my worst fears.

The act of driving—a blend of technical skill, constant vigilance, and decision-making—mirrored
my academic journey. Just as I found myself overwhelmed by the enormity of actually having
control of a tonnage of roiling metal, my academic endeavors often saw me grappling with a
confidence-sapping sense of ill-preparedness. As a PhD student reading the mathematical physics
literature I frequently felt like a passenger to a supremely confident Lewis Hamilton effortlessly
careering through the formulaic chicanery. My over reliance to take on trust the conceptual leaps
made by an author, was pragmatic: the product of an over-accumulation of micro doubts borne
of insufficient embedded foundational knowledge of fields such as analysis and Combinatorics. I
reflect that I was always merely an appreciative spectator (at best a critic) of the art of the mathe-
matical physicist, as such never a mathematical player, nor a conductor and nigh a composer.

Driving demands moment-to-moment engagement with the present, a constant readiness to
respond to the unforeseen. A muscle memory equivalent is required to navigate a challenging paper:
without sound foundational knowledge there reaches a breaking point when that thread of vaguely
held together reasoning unravels. In both real and abstract realms, the fear of making a mistake due
to a lack of foundational understanding is palpable. As a result my recent journeying through the
foothills of number theory, are from the perspective of a sympathetic High school teacher, in which
I am minded1 of the importance of foundational knowledge, the value of incremental learning,
and the beauty of discovering connections for yourself. The fears and uncertainties that have held
me back in past incursions are gradually giving way to a newfound, if not Dunning-Kruger like
confidence in my ability to control and navigate another niche realm of abstract thought.

1Much to my chagrin I thought that my added value would be the joining of some dots for my students. Not so.

12 Chapter 1. Foreword

I know now that I will not, ever drive. Instead, rather I will wait for the day when self-driving
vehicles become the norm rather than the exception. My risk aversion has led me into the merciless
embrace of silicon-based automation. Just as I can anticipate an era of fully self-driving cars, I find
myself leaning on technological advancements in my mathematical explorations. Perhaps the better
analogy now is as the co-driver to Rally driving’s Sébastien Loeb, with whom we might begin to
contemplate navigating the murkier terrains of number theory with Python’s plotting and symbolic
libraries as our map and compass. Together, crafting the pace notes, those algorithms that guide our
exploration, anticipating turns and challenges with occasional aplomb. With the heavy lifting of
computation and analysis offloaded, we can attend to the conceptual and creative aspects of the
discipline.2

My leaning on coding in my latter-day studies is not a concession of defeat but an acknowledg-
ment of these tools’ potential to enhance our discovery processes. It’s a recognition that sometimes,
the best way to navigate complexity is not by becoming entangled in the knots of every detail but
deploy a scythe to slash our way through the weeds efficiently. As we stand on the threshold of a
future in which technology promises to redefine our capabilities, I am mindful that progress often
comes from recognizing when to take control and when to let go. In mathematics, as in driving,
there is a time for hands-on manipulation and a time for stepping back and allowing the algorithms
to take the wheel. The aim of the wander that I wish to share with the reader in the foothills of
number theory, is not to acquire the darkest matters of the subject in the spirit of a practitioner but
rather about priming the canvas.

In embracing technology we can explore some of those otherwise inaccessible realms of
mathematics with some little depth and no little insight. So, while we might not all look forward to
the day when we the transport mode of choice that has sealed us off from each other is steered by an
actual automaton, the more curious amongst our breed will surely enjoy the support tools that are
so adept at unpicking the code within the code, that is mathematics. We will set aside the pursuit
of ultimate elegance through definitive proofs, and rather look to reveal structures by heuristically
suggesting by dint of depth of computation or by mere plausibility arguments. That is, in a way
that welcomes both those taking their first further steps in the spirit of having read [12] to the more
seasoned mathematicians who has dipped into [19]. By doing so, we will occasionally uncover
some lesser-known secrets by accessible means that additionally happily serves as a focus to hone
your python coding development skills.

2I rue how statements like "a combinatorial analysis reveals that, due to intrinsic symmetries and antisymmetries,
the Riemann tensor possesses 20 independent components, while the Ricci tensor has 10 independent components in a
four-dimensional spacetime" would have "then" delivered an undue load on my already stretched knowledge envelope but
"now" can be revealed by a casually constructed AI prompt. See Appendix for a detailed exposition on the combinatorial
analysis of the Riemann and Ricci tensors’ independent components!

1.1 Prologue 13

1.1 Prologue

An introductory chapter initially sets the stage for how our characters from Number Theory will be
unpicked Python coding. How we will ideas from data science to probe Number theoretic concepts
in a largely informal manner. As such we will bleed in expositions of technical concepts in a
dangerously casual way, some of which will be developed further later on, others of which will
serve to merely prime the reader for more formal treatments in their later undergraduate journey.
Some high level topics:

1. Composite Number Partitioning ... how to cut up a number or slice a rectangle
2. Reptend Prime Orbit Cyclicality ... periodicity of reciprocals
3. Semi-Pseudo Prime Number Epigraphing ... factorisation beyond the number line
4. Aperiodic Fibonacci Tiling ... pictorial bunny birth and death
5. Determining Primitive Triangular Congruency ... determinants of Area and Perimeter
6. Doubly exaggerated Derrangement ... beyond the factorial!
7. p-adic number lengths ... binary as a dyadic length metric
8. Stratification of primes ... slicing primes in spirit of Kleiber
9. Figurative numbers ... visiting Polygonia

10. AbSurd Irrationality of Metallica ... golden ratio et al
11. Giving a Toss by sticking it to Pascal ... applying hockey stick to Bernouilli trials
12. Ensembles of Balls ... putting balls in boxes
13. Integer Lattice Point Diophantism ... allusion to elliptic curve grandeur

Part 1: Foundations and Building Blocks
• We begin with foundational concepts in number theory- mostly arithmetic functions that will

be utilized explicitly and mostly implicitly throughout the book. Fermat little theorem prime
factorisation notion of Least Common Multiple and Greatest Common Divisor.

• We will touch on some nice examples early on to demonstrate the Data science inferencing
we can infomally apply to these concepts.

Part 2: Exploring Number Patterns
• We will explore specific number patterns such as composite rectangular numbers, pseudo

primes, and figurative numbers finding nice ways to epigraph them using Ulam’s Number
spiral and golden angle polar plots. Each chapter alludes to either a historical context, slightly
prosaic application or a problem that has puzzled mathematicians, to motivate the subsequent
data-driven exploration.

• Chapters here are on Fibonacci numbers, stratification of primes, Goldberg conjectures
composite number partitioning and golden ratio Metallica.

Part 3: Advanced Topics in Number Theory and Data Science
• This section include more complex topics such as combinatorics, integer lattices, and Dio-

phantine equations.
• here the data analysis is a little more sophisticated even if the number theory is not as we

touch on graph theory although we do link Pythagorean triples to Modular functions and
congruent numbers to elliptic curves.

Part 4: Special Topics and Applications
Here we discuss theories and methods to solve real-world problems or explore mathematical
curiosities, such as the secretary problem, the Enigma machine, and the geometric structures under
Klein’s Erlangen Program.

14 Chapter 1. Foreword

1.2 Number Nomenclature

Numbers can be broken down and reconstructed by: factorization and partitioning:
• Factorization focuses on the multiplicative structure of integers.
• Partitioning focuses on their additive structure.

Divisors (or factors) of a number include all the integers that can divide that number without leaving
a remainder, not just the prime ones. The divisors of 18 are 1,2,3,6,9,18 while its proper set does
not include 18 itself. Some of these divisors are composite numbers themselves (such as 6 and
9). When we say a number is “abundant” or “deficient,” we are referring to the (proper) sum of
its divisors excluding the number itself. We can fully partition the naturals accordingly as (1.1,
Amongst the abundants are the “semi-perfects” which posses a subset of divisors equal to the

Naturals

Abundant Deficient Perfect Weird

12, 18 Primes, 1, 8 28 70

Figure 1.1: Partitions of the Naturals by abundance of divisors.

number itself. Perfection occurs when the proper subset of the divisors of the number sum to that
number.

Natural
Partitions

Composites

Semi-Perfect
12 < 1+2+3+4+6

Primes

Fermat 4k+ 1
13 = 22 + 32

Figure 1.2: Natural Partitions into Composites and Primes, with example types.

Highly Composite Numbers are the antonyms of prime numbers and are presented as such in (1.3).
Pseudo primes (only) appear on first blush to be prime, generated as they are by our false friend,
Fermat’s little theorem.

Factorization

Composites

Highly, 24 Lightly, 21

Pseudo
Primes

341 561

Primes

337 347

Figure 1.3: Factorization of the Naturals.

1.2 Number Nomenclature 15

When we speak of a number being a “perfect square” or “oblong,” we’re referring to the nature
of its divisors in terms of geometric shapes: a perfect square has an even power of prime factors (like
22, 32), while an oblong number is the product of two consecutive integers (like 2×3, 3×4). The
organigram, (1.4) depicts the classification of composite numbers based on their Möbius function
(µ) values, thus (for example) distinguishing between perfect square and ”cuboid” numbers which
have respectively repeated and unrepeated primes as factor roots:

Composites

µ = 0 µ = −1

Square Cuboid

4=(22) 30=(2×3×5)

20=(4× 5) 42=(6× 7)
Oblong

Figure 1.4: Partitions of Composites by their Möbius function.

Natural Prime numbers can be categorised based whether they are expressible as 4k+ 3 or
4k+1, where k is an integer. This subdivision is not merely algebraic but ties deeply into number
theory and its applications. The organigram (1.5) illustrates this delineation of prime numbers
Gaussian and non-Gaussian primes. Reptend primes, which generate periodic continuations in their
reciprocal decimal expansions can be of both types.

Primes

4k+3-Gaussian

Reptend-:7,19, ...

4k+1- Non-Gaussian

Fermat

5,17,257,65537...?

Reptend:13,29, ...

Figure 1.5: Partitions of Primes by their Gaussian Prime status.

Gaussian primes3 are (also) primes in the set of Gaussian integers, being complex numbers of
the form a+bi where a and b are integers. The first few Gaussian prime integers among the natural

3The decomposition into factors in the Gaussian integer domain, distinguishes between the multiplicative structures
of natural and Gaussian integers.

16 Chapter 1. Foreword

numbers are:

3 = 4×0+3

7 = 4×1+3

11 = 4×2+3

19 = 4×4+3

A Natural prime is a Gaussian prime only if it is of the form 4k+3. Natural primes that can be
factored into two non-real ”conjugate” Gaussian integers are non-Gaussian are of the form 4k+1:

2 = (1−1i)(1+1i)

5 = (1−2i)(1+2i) = 4×1+1 = 22 +12

17 = (1−4i)(1+4i) = 4×4+1 = 42 +12

37 = (1−6i)(1+6i) = 6×6+1 = 62 +12

Non-Gaussian Primes of the 4k + 1 type are to be called Fermat because they can always
be expressed as the sum of two square numbers (a2 +b2). A special subset of primes sit within
the 4k+ 1 Non-Gaussian primes. These Fermat4 primes are of the form Fk = 22k

+ 1 for some
non-negative integer k. Pierre de Fermat conjectured (wrongly) that all such numbers of this form
are prime. As of now, Fermat primes are known to exist only for n = 0,1,2,3, and 4, corresponding
to the primes 3,5,17,257, and 65537 respectively. No other Fermat primes have been found, and it
is an open question in mathematics whether any more exist.

Blind Purposeful Striving
Much of the time you may have the impression you are being led down a dark alley only to face
some mathematical embodiment of the abyss. What better way to pop the existential vacuousness
of our blind, purposeless striving with the blind purposeful strut that our kensin and myosin
proteins must surely be seeking to engender in us https://elifesciences.org/articles/
05413#abstract..

“All willing springs from lack, from deficiency, and thus from suffering. Fulfillment
brings this to an end; yet for one wish that is fulfilled there remain at least ten which
are denied. Furthermore, the desire lasts long, the demands are infinite; the satisfaction
is short and scantily measured out. But even the final satisfaction is itself an illusion;
the wished-for end is only a deception. The wish fulfilled at once makes way for a new
one; the former is a known delusion, the latter a delusion not as yet known.”
— Arthur Schopenhauer, "The World as Will and Representation."

Fear not the calling of these numeric sirens, for of all the forms to chase or at worst to merely
appreciate, these Platonic ones are surely worthy of gaining Nietzschian wilful mastery over.

4The allure of Fermat primes lies not only in their scarcity but also in their crucial role in the construction of regular
polygons that can be constructed with a compass and straightedge. According to Gauss’s famous result, a regular polygon
with p sides can be constructed in this manner if and only if p is a Fermat prime or a product of distinct Fermat primes
and a power of 2.

https://elifesciences.org/articles/05413#abstract.
https://elifesciences.org/articles/05413#abstract.

2. Number Theory as a Data Science

These were spectator manuals. Implicit in every line is the idea that
‘Here is the machine, isolated in time and in space from everything else in the universe.

It has no relationship to you, you have no relationship to it,
other than to turn certain switches, maintain voltage levels,

check for error conditions....’ and so on.”
— Robert M. Pirsig, Zen and the Art of Motorcycle Maintenance[13]

This is a book of highly developed characters embroiled in a web of intricate plot and sub plots.
It is not a novel novel but a novel journey into arithmetic number theory, treating it as a data science,
whose secrets are to be partially unpicked by Python code. Whether you are a budding number
arithmetic enthusiast, a high school teacher, that most curious of creatures that has maintained
some semblance of youthful curiosity, or a Python novice eager to grasp its syntax, this book offers
an opportunity to delve into and represent the pattern and structures of that most ubiquitous of
languages - our number system.

Viewing the Number line as a rich data source on which to perform data science, we will
explore age-old questions, using computational tools to gain insights and draw out otherwise
unseen patterns in the landscape of numbers. Data Science is an interdisciplinary field that involves
extracting insights and knowledge from data using various techniques, tools, and methodologies
encompassing the collecting, processing, analyzing, and interpretation of data to derive insights
and support decision-making. Data science combines skills from computer science, statistics,
mathematics, domain expertise, and data visualization to address complex problems and uncover
patterns, trends, and correlations in large and diverse data sets.

We will undertake coding projects, employing Python1, sedately and mostly informally reveal
some fundamental number theoretic concepts by treating the number line as a large data set, create
visualizations, and apply statistical techniques to navigate through some delicacies from discrete

1python is a beginner-friendly, widely used, high level programming language renowned for its simplicity and
versatility that will allow us to implement algorithms to outline conjectures and results with some efficiency and clarity.

18 Chapter 2. Number Theory as a Data Science

Mathematics, unveiling some connections and numerical relationships. This book is aimed at
anyone with a preference to take a sejourn through elementary algebraic number theory through the
lens of data science rather than tackling its formal structures head on. Whether you are a student
about to step into higher education, a high school teacher seeking engaging mathematical resources,
or an inquisitive individual eager to rekindle your passion for numbers, this book is supposed to
offer a unique blend of theory, computation, and practical applications. The spirit of the book is
twofold:

• use pictures to support a conjecture or generate a natural question;
• develop some programming skills along the way to support our enquiries.

Google Colab coding platform
Google Colab provides a versatile and powerful platform for data science and machine learning
projects. being an online platform that provides a Jupyter notebook environment for interactive
computing and data analysis. As it allows users to write and execute Python code in the browser
with no configuration required, it provides access to powerful computing resources, and an easy
means for sharing the code. These will be shared as colab notebook .ipynyb files. Colab also allow
users to import libraries and dependencies necessary for their code to run:

import numpy as np
import matplotlib.pyplot as plt

Users write Python code in cells and each cell can be executed independently. The code snippet:

def compute_square(x):
return x * x

square_of_2 = compute_square(2)
print(square_of_2)

follows our general construction template, with functions like compute_square declared before
being called in the main thread of the code with or without local variables.

• x is a local variable within the compute_square function.
• square_of_2 is a global variable, assigned the return value of compute_square(2).

After writing the code, users execute the cell by clicking the play button or pressing Ctrl+Enter and
the code will run in the Google Colab servers, and the output including print statements, plots, and
other visualizations, will be displayed directly under the code cell.

Let’s first prime our starting route with some vague introductory remarks:

Definition 1 Number theory is a branch of pure mathematics that primarily deals with the
properties, relationships, and patterns of integers (whole numbers) and their various properties.
Key areas of focus within number theory that we will look at include:

Prime numbers: as natural numbers greater than 1 that have no divisors other than 1 and
themselves, Number theory explores how these are distributed among natural numbers,
positing prime number theorems and conjectures.

•• Divisibility: examines how one integer is said to divide another if the quotient is also an
integer.

• Congruence: Modular arithmetic deals with remainders when dividing integers and has
applications in cryptography and computer science.

• Diophantine equations: involves finding integer solutions for polynomial equations with
multiple variables. A famous example is that of Fermat’s Last Theorem.

• Continued fractions: which represent real numbers in an elegant way using a sequence
of partial fractions.

https://colab.research.google.com/?utm_source=scs-index

19

I will occasionally highlight a key python coding snippet used in the course of expositions like the
following functions that implement fundamental algorithms (inefficiently) related to prime numbers.
By utilizing the Sieve of Eratosthenes principle in modified form prime numbers are generated by:

def generate_primes(limit):
primes = []
for num in range(2, limit):

is_prime = True
for div in primes

if div * div > num:
break

if num % div == 0:
is_prime = False
break

if is_prime:
primes.append(num)

return primes

Figure 2.1: Sieve of Eratosthenes.

Key Operations:
• Uses a nested for loop to iterate through numbers up to the given limit to check divisibility

by all previously found prime numbers.

https://colab.research.google.com/drive/1el5vH5v5pJuh4cyDUZwidYD72mILiOB0?usp=sharing

20 Chapter 2. Number Theory as a Data Science

• Employs a square root optimization (div * div > num) to reduce the number of checks
needed to determine if the current number is prime which is crucial because if n is not
divisible by any prime number less than or equal to

√
n, then n is prime.

• Appends the number to the list of primes if it is not divisible by any of primes found so far.
Prime factors of a given number n, are calculated and returned in a list by:

def prime_factors(n):
factors = []
i = 2
while i * i <= n:

if n % i:
i += 1

else:
n //= i
factors.append(i)

if n > 1:
factors.append(n)

return factors

Key Operations:
• Starts with smallest prime, 2, and iteratively checks divisibility of n by successive integers.
• If n is divisible by i, i is added to the list of factors, and n is divided by i. This step is repeated

until n is no longer divisible by i, at which point i is incremented. n % i is used to check
if the value of variable n is divisible by the value of variable i without any remainder. The
% operator returns the remainder of the division operation between n and i. If n % i == 0
evaluates to True, it means that n is evenly divisible by i.

• This process uses a while loop that continues as long as i2 ≤ n, leveraging the fact that if n is
not divisible by any number less than or equal to its square root, then n must be prime.

• If after this process n is greater than 1, n itself is a prime factor and is added to the list of
factors. This condition handles cases where n is a prime number or the remaining n after
division is a prime number.

2.1 Modular Arithmetic 21

2.1 Modular Arithmetic
Definition 2 Digital Root Digital Roots are derived from a number by the process of iteratively
summing its digits until a single-digit number is obtained. Formally, the digital root of a
non-negative integer is the value obtained after the iterative process of summing its digits. For
instance, the digital root of 942 is calculated as 9+4+2 = 15, and then 1+5 = 6.

The code multiplicationTableDigitalRoots.ipynb delivers the following table.

n/m 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
2 2 4 6 8 10 12 14 16 2 4 6 8 1 3 5 7
3 3 6 9 12 15 18 21 24 3 6 9 3 6 9 3 6
4 4 8 12 16 20 24 28 32 4 8 3 7 2 6 1 5
5 5 10 15 20 25 30 35 40 5 1 6 2 7 3 8 4
6 6 12 18 24 30 36 42 48 6 3 9 6 3 9 6 3
7 7 14 21 28 35 42 49 56 7 5 3 1 8 6 4 2
8 8 16 24 32 40 48 56 64 8 7 6 5 4 3 2 1
9 9 18 27 36 45 54 63 72 9 9 9 9 9 9 9 9
10 10 20 30 40 50 60 70 80 1 2 3 4 5 6 7 8
11 11 22 33 44 55 66 77 88 2 4 6 8 1 3 5 7
12 12 24 36 48 60 72 84 96 3 6 9 3 6 9 3 6
13 13 26 39 52 65 78 91 104 4 8 3 7 2 6 1 5
14 14 28 42 56 70 84 98 112 5 1 6 2 7 3 8 4
15 15 30 45 60 75 90 105 120 6 3 9 6 3 9 6 3
16 16 32 48 64 80 96 112 128 7 5 3 1 8 6 4 2
17 17 34 51 68 85 102 119 136 8 7 6 5 4 3 2 1
18 18 36 54 72 90 108 126 144 9 9 9 9 9 9 9 9

Equivalence with Modular Arithmetic
A digital root is just modular arithmetic, specifically modulo 9. The digital root of a number being
congruent to the number modulo 9, with an exception for numbers divisible by 9. Symbolically, for
any positive integer n:

digital root of n = (n mod 9)+(1− n mod 9
9

)

We will use this digital signature to investigate by coding the periodicity of various power
sequences such as 2n,3n.

The rhythm of the periods of digital roots and modular results of these powers provide insights
into the underlying mathematical properties and behaviors of numbers and sequences.

2.1.1 Clock Arithmetic and Encoding
Modular arithmetic, or clock arithmetic, is a powerful tool for analyzing and interpreting complex
sequences, such as power series. By applying this method, we can distill intricate patterns and
behaviors within sequences into more manageable forms. The exploration of periodicity and
patterns in modular arithmetic provides crucial insights for creating robust encryption algorithms,
ensuring secure and reliable data protection mechanisms. In cryptography, modular arithmetic is
central to public key cryptography algorithms, including ElGamal and RSA (which we will explore
a little more later) encryption systems. For now we will just look at the Digital Roots (DR) of the
powers of bases, ranging from 2 to 200 and observe the inherent periodicity in these roots, revealing
fundamental patterns that underpin the behavior of numbers in their exponential forms. Given a

https://colab.research.google.com/drive/1YbutCdrgMkPaHyE3cDw373UMhIuAP8j8?usp=sharing
https://colab.research.google.com/drive/1pNRobqjZBiQbiuZEsc33qeiozXbRDbTc?usp=sharing

22 Chapter 2. Number Theory as a Data Science

Figure 2.2: Periodicity of power series according to base 3,5 and 7

base r in the range from 2 to 200, we will compute the Digital Root (DR) of its power. For instance,
for r = 3 and an exponent of 6, we have:

DR[36 = 729]→ 9+2+7 = 18 → 1+8 = 9

Periodicity of the Periods
Each base r has an associated period T , denoting the interval over which its DR repeats. The
periods T for various bases r are enumerated as follows:

TDR(2n) = 6, TDR(3n) = 1, TDR(5n) = 6, TDR(7n) = 3
The period of these periods, T , also exhibits a periodic nature, fundamentally aligned to the

digit 9. The sequence of periods manifests as:
{6,1,3,6,1,3,2,1,1}
This recurrent sequence encapsulates the inherent rhythm within the digital roots of the powers

of bases. The exploration of digital roots and their associated periods reveals intricate patterns .
This study sheds light on the hidden rhythmic structures within the universe of numbers, offering
novel insights and perspectives for further mathematical exploration and analysis.

What questions do these numbers conjure? The periodicity of all n-power series 2n,3n, ... mod
prime number base always end in 2 ,1, 1 why?2

2It’s great to observe patterns as they can be the stepping stones towards deeper mathematical truths, but they do not
constitute a proof on their own.

2.2 Arithmetic Functions and Algorithms 23

Number Values

2 1, 1

3 2, 1, 1

5 4, 4, 2, 1, 1

7 3, 6, 3, 6, 2, 1, 1

11 10, 5, 5, 5, 10, 10, 10, 5, 2, 1, 1

13 12, 3, 6, 4, 12, 12, 4, 3, 6, 12, 2, 1, 1

17 8, 16, 4, 16, 16, 16, 8, 8, 16, 16, 16, 4, 16, 8, 2, 1, 1

19 18, 18, 9, 9, 9, 3, 6, 9, 18, 3, 6, 18, 18, 18, 9, 9, 2, 1, 1

Table 2.1: non repeating periodicity strings for base prime, p

Figure 2.3: Stack charts pictorially representing the rhythms in the table above.

2.2 Arithmetic Functions and Algorithms

In number theory, several important arithmetic functions arise in the study of integers. We introduce
four such functions: the number of divisors τ(n), and the sum of divisors, σ(n) functions, Euler’s
totient, φ(n) and Möbius, µ(n) functions.

2.2.1 Divisor, p|n

Given two integers n and p, we say that p divides n (denoted as p|n) if there exists an integer c such
that n = p · c. In this case, p is called a divisor of n, and n is called a multiple of p. Consider p = 5
and n = 30 so that n = p · c = 5 ·6 and we say 5 divides 30, denoted as 5|30, making 5 a divisor of
30, and 30 a multiple of 5.

1. np (Number of Prime Factors):is often referred to as the "number of prime divisors" or
"number of distinct prime factors" of positive integer, n.

2. rp (Reduced Number of Prime Factors): represents the count of distinct prime factors of n
and is sometimes called the "radical" of n.

3. f (Number of Distinct Factors): (or divisors) is typically referred to as the "number of
divisors" or "number of factors" of n.

24 Chapter 2. Number Theory as a Data Science

2.2.2 Number and Sum of Divisors Functions τ(n), σ(n)
The number of divisors function, denoted τ(n), gives the number of positive divisors of n, while
the sum of divisors function, denoted σ(n), calculates the sum of all positive divisors of n:

• τ(12) = 6 since its divisors are 1, 2, 3, 4, 6, 12, and so σ(12) = 1+2+3+4+6+12 = 28.
• τ(14) = 4 since its divisors are 1, 2, 7, 14 and so σ(14) = 1+2+7+14 = 24.

The class of numbers, known as perfect numbers is succinctly defined in terms σ(n). A number n is
perfect if the sum of its positive divisors (excluding itself) is equal to n, or equivalently, σ(n) = 2n.
So that the first perfect number is 6 because 1+2+3 = 6, and σ(6) = 1+2+3+6 = 12 = 2×6.

2.2.3 Euclid’s Algorithm for finding the GCD of Multiple Numbers
Euclid’s algorithm is a method for finding the greatest common divisor (gcd) of two or more
numbers. Let’s consider finding the gcd of four numbers: a, b, c, and d. We’ll denote the gcd
of these numbers as gcd(a, b, c, d). The key idea behind Euclid’s algorithm is that gcd(a, b, c,
d) is equal to gcd(gcd(a, b), c, d). In other words, we can find the gcd of multiple numbers by
iteratively finding the gcd of pairs of numbers. A Geogbra implementation by David Wees is here.
To illustrate this, let’s find the gcd of the numbers a = 36, b = 24, c = 54, and d = 27.

gcd(a,b,c,d) = gcd(gcd(a,b),c,d)

= gcd(gcd(36,24),54,27)

= gcd(12,54,27)

= gcd(gcd(12,54),27)

= gcd(6,27)

= gcd(gcd(6,27))

= gcd(3)

= 3

Therefore, gcd(36, 24, 54, 27) is equal to 3. Euclid’s algorithm can be applied iteratively as in the
code GCD-iterate.ipynb until we reach a point where we have only one number left, which is then
the gcd of the original set of numbers.

def find_gcd(numbers):
gcd_result = numbers[0]
for num in numbers[1:]:

gcd_result = math.gcd(gcd_result, num)
return gcd_result

• find_gcd starts by initializing gcd_result with the first number in the list.
• It then iterates through the rest of the numbers in the list (starting from the second number).
• For each number, it updates gcd_result by computing the GCD of the current gcd_result

and the number using the math.gcd function.
• After processing all the numbers, returns gcd_result, (GCD of all numbers in the list).

find_gcd is called and user inputs are taken and controlled in the following snippet.

n = int(input("Enter the number of numbers: "))
numbers = []
for i in range(n):

number = int(input(f"Enter number {i+1}: "))
numbers.append(number)

gcd_result = find_gcd(numbers)

https://www.geogebra.org/m/ztbesvsd
https://colab.research.google.com/drive/11aDiNTEXwnOiFhVf68uOPcs1EA3Yk1Kl?usp=sharing

2.2 Arithmetic Functions and Algorithms 25

2.2.4 Euler’s Totient Function φ(n)

Euler’s totient function φ(n) counts the positive integers up to a given integer n that are relatively
prime (co-prime) to m. So for example for the number 12, we identify all numbers less than it
that do not share any common factors with 12 other than 1. That is, given its prime factorization,
12 = 22×3 and the numbers less than 12 are 1,2,3, . . . ,11 we find the gcd of each of these numbers
with 12:

gcd(1,12) = 1, coprime,

gcd(2,12) = 2, not coprime,

gcd(3,12) = 3, not coprime,

gcd(4,12) = 4, not coprime,

gcd(5,12) = 1, coprime,
...

gcd(11,12) = 1, coprime,

thus identifying the coprimes to 12 as 1, 5, 7, and 11, and φ(12) = 4, as they are the only numbers
less than it whose gcd with 12 is 1. For a prime number p, the value of φ(p) is p−1, because all
integers less than p are relatively prime to p. For a composite number n with a prime decomposition
n = pe1

1 pe2
2 pe3

3 · · ·, where pi are distinct prime numbers and ei are their respective exponents, the
totient function can be derived using the principle of inclusion-exclusion3 of combinatorics. The key
observation is that the fraction of numbers less than n and not relatively prime to n can be expressed
in terms of the fractions of numbers divisible by each of the prime factors of n. Specifically, φ(n)
can be calculated as:

φ(n) = n
(

1− 1
p1

)(
1− 1

p2

)(
1− 1

p3

)
· · ·

which arises because for each prime pi dividing n, 1
pi

of the numbers less than n are divisible
by pi and hence not relatively prime to n. Subtracting these fractions from 1 gives the fraction
of numbers that are relatively prime to n, and multiplying by n gives the count of such numbers.
Consider again our example, n = 12, which has a prime decomposition of 22×3 and thus according
to the formula:

φ(12) = 12
(

1− 1
2

)(
1− 1

3

)
= 12× 1

2
× 2

3
= 4,

there are 4 integers up to 12 that are relatively prime to 12. In a little more detail, we write the

3This principle corrects for the fact that when we add the sizes of individual sets, elements that are common to
multiple sets get counted more than once. So suppose we have two sets, A and B. The principle states that to find the
number of elements in the union of A and B (denoted A∪B), we must add the number of elements in A and B and then
subtract the number of elements that are in both A and B (denoted A∩B):|A∪B|= |A|+ |B|− |A∩B|

• Let A be a set of people who like apples, and suppose there are 20 people in set A.
• Let B be a set of people who like bananas, and suppose there are 15 people in set B.
• Suppose 5 people like both apples and bananas and so are counted in both set A and set B.

Applying the inclusion-exclusion principle, the number of people who like either apples or bananas or both is:

|A∪B|= |A|+ |B|− |A∩B|= 20+15−5 = 30

.

26 Chapter 2. Number Theory as a Data Science

totient as a product taken over all distinct prime divisors p of n.:

φ(n) = n∏
p|n

(
1− 1

p

)

Consider the prime factorization of 54 as 2×33 so that we have:

φ(54) = 54
(

1− 1
2

)(
1− 1

3

)
.

Looking at this in terms of the fractions of numbers up to 54 that are not co-prime to it due to each
prime factor and their combinations we have:

φ(54) = 54
(

1−
(

1
2
+

1
3

)
+

1
2×3

)
= 54

(
1− 1

2
− 1

3
+

1
6

)
= 18

where:
• −1

2 accounts for numbers divisible by 2,
• −1

3 accounts for numbers divisible by 3,
• + 1

2×3 corrects for the over-counting of numbers divisible by both 2 and 3 (subtracted twice).
The inclusion-exclusion principle thus gives an alternating sum:

φ(n) = n

(
∑
r

1
pr

−∑
r>s

1
pr ps

+ ∑
r>s>t

1
pr ps pt

− . . .

)

To find the totient function φ(p j) for a prime power p j where p is a prime number and j is a
positive integer, just now consider that:

1. Numbers Not Relatively Prime to p j: The numbers that are not relatively prime to p j are
the multiples of p within the range from 1 to p j:

p,2p,3p, . . . , p j−1 p

So in total, there are p j−1 such numbers.
2. Total Numbers from 1 to p j: There are p j numbers in total.
3. Numbers Relatively Prime to p j: To count the numbers that are relatively prime to p j,

subtract the count of numbers not relatively prime to p j from the total count of numbers:

φ(p j) = p j − p j−1

Hence, φ(p j) = p j − p j−1, saying that there are p j − p j−1 numbers that are relatively prime to p j.

Totient Function Dot Plot

The dot plot (2.4) presents a dot corresponding to a number’s coprime and the Totient function
φ(m) as a line graph, counting co-primes for each number m.

2.2 Arithmetic Functions and Algorithms 27

Figure 2.4: Euler totient function with dot plot of coprimes.

plot_coprimes_above_totient, below creates a visualization that represents the coprimes of
each integer up to a specified limit, up_to_m overlaying the coprimes on top of φ(m), to provide a
comparative view between the individual coprimes and the count of coprimes for each integer.

def plot_coprimes_above_totient(up_to_m):
plt.figure(figsize=(14, 7))
for m in range(1, up_to_m + 1):

coprimes = find_coprimes(m)
for coprime in coprimes:

color = ’blue’
if (coprime - 1) % 6 == 0:

color = ’red’ # Color for 6n-1 coprimes
elif (coprime + 1) % 6 == 0:

color = ’green’ # Color for 6n+1 coprimes
plt.plot(m, coprime, ’o’, color=color, markersize=3)

m_values = np.arange(1, up_to_m + 1)
phi_values = np.array([len(find_coprimes(m)) for m in m_values])

Below is a breakdown of the function’s operations:
1. The function initializes a plot with a specified figure size.
2. For each integer m in the range from 1 to up_to_m, it:

(a) Calls the function find_coprimes(m) to retrieve list of integers that are coprime to m.
(b) Iterate over the list of coprimes and plot each coprime as dot on the plot, where:

• Red dots represent coprimes of the form 6n−1.
• Green dots represent coprimes of the form 6n+1.
• Blue dots represent other coprimes.

(c) Adjust the size of the markers for better visibility.
3. Generate an array of integers, m_values, from 1 to up_to_m.
4. Calculate φ(m) for each integer m in m_values, creating an array of phi_values.
5. Overlay the phi_values on the same plot.

The following segment of the plot_coprimes_above_totient function overlays the Euler To-
tient function, φ(m), on the plot that initially represents coprimes for each integer m. A second
y-axis, ax2, is created using the twinx() method allowing for the representation of the Euler
Totient function φ(m) on a different scale.

28 Chapter 2. Number Theory as a Data Science

ax2 = plt.gca().twinx()
ax2.plot(m_values, phi_values, color=’orange’, linewidth=2, zorder=1)
ax2.set_ylabel(’$\phi(m)$’, color=’darkgrey’)
ax2.tick_params(axis=’y’, labelcolor=’darkgrey’)
ax2.legend(loc=’upper right’)

The key operations performed in this segment are as follows:
1. The ax2.plot method is used to plot the values of φ(m) against m. The line representing

φ(m) is set to have an orange color, a linewidth of 2, and a z-order of 1, ensuring that it is
drawn on top of other elements in the plot.

2. The y-axis label is set to ’φ(m)’, and its color is set to dark grey using the set_ylabel and
tick_params methods.

3. A legend is added positioned at the upper right of the plot area.
This segment of the function ensures that the Euler Totient function φ(m) is clearly represented

and distinguished on the plot, providing an insightful comparison between the count of coprimes
for each integer and the individual coprimes themselves.

Möbius Function µ(n)
The Möbius function, µ(n) is defined for all positive integers n as follows:

µ(n) =

1 if n = 1,
0 if n has a prime factor p with p2|n,
(−1)k if n is a product of k distinct prime numbers.

µ(n) plays a crucial role in analytic number theory and combinatorics and we note its key properties
with examples as:

• µ(n) = 0 if n has any prime factor raised to a power greater than 1,
• µ(n) = (−1)k if n is a product of k non repeating prime factors.
• µ(12) = 0 because 12 = 22 ×3 has a squared prime factor.
• µ(14) =−1 since 14 is the product of two distinct prime numbers (2 and 7).
• µ(30) =−1 because 30 = 2×3×5 is a product of k = 3 distinct prime numbers.
• µ(54) = 0 because 54 = 33 ×2 has a prime factor (3) raised to a power greater than 1.
We will come to think of numbers like 30 as a kind of (hyper)-cuboid in the space of its prime

factors, given they have no "square" sections, (no repeated prime dimension) and with a Möbius
function equal to negative 1. Here, "square" refers to any prime factor raised to a power greater
than 1, not just a power of 2 or any even power.

Table 2.2 lists oblong numbers of the form n = m× (m−1), ranging from n = 30 to n = 90.
For each number, the table provides values for Euler’s totient function φ(n), the number of divisors
function τ(n), the Möbius function µ(n), and lists all possible cuboid representations based on
their distinct factors.

2.2 Arithmetic Functions and Algorithms 29

n φ(n) τ(n) µ(n) Cuboid Possibilities

20 8 6 0 20 = 2×2×5,
20 = 1×4×5

30 8 8 -1 30 = 2×3×5,
30 = 1×6×5

42 12 8 1 42 = 2×3×7,
42 = 1×6×7

56 24 8 0 56 = 2×2×14,
56 = 1×8×7

72 24 12 0 72 = 2×2×18,
72 = 2×3×12,
72 = 1×8×9

90 24 12 0 90 = 2×3×15,
90 = 2×5×9,
90 = 1×10×9

Table 2.2: Arithmetic functions associated to the Oblong Numbers

2.2.5 Least Common Multiple

The Least Common Multiple of the set of integers {1,2, . . . ,n} plays a significant role in number
theory and combinatorics.

Definition 3 Least Common Multiple ,(LCM) of the integers a1,a2, . . . ,an, denoted LCM[a1,a2, . . . ,an],
is the smallest positive integer m such that m is a multiple of each ai, where 1 ≤ i ≤ n:

LCM[a1,a2, . . . ,an] = min{m ∈ N : m ≥ max(|a1|, |a2|, . . . , |an|) and ∀i,ai|m}

where ai|m denotes that ai is a divisor of m, and N represents the set of natural numbers.

The natural logarithm of the LCM of these integers provides insights into their collective divisibility
properties and connects to deep results in analytic number theory, including those related to Apéry’s
work on the irrationality of ζ (3). While our discussion is not directly related to Apéry’s theorem4,
the approach of examining properties of numbers through their prime factorization and logarithmic
characteristics is in the spirit of his work.

4Apéry’s contributions to number theory, especially his proof of the irrationality of ζ (3), allude to distributional
intricacy amongst the integers and primes. For a fuller discussion The Irrationals, [5] is an irrational romp.

30 Chapter 2. Number Theory as a Data Science

Figure 2.5: Log of LCM of 1 to n versus n

The scatter plot of ln(LCM([1,2, . . . ,n])) versus n provides demonstrates, if nothing else, the
effectiveness of computational techniques in handling large-scale numerical problems offering a
visualization of how the growth of combined divisibility of the first n integers is of an exponential
nature.

Calculation of ln(LCM)

Direct computation of the LCM for a large set of numbers can quickly lead to very large integers,
posing challenges for standard numerical operations.

To manage these large calculations, utilizes the sum of the natural logarithms of prime factors
raised to their highest powers not exceeding n, thus avoiding the direct computation of the LCM.:

ln(LCM([1,2, . . . ,n])) = ∑
p≤n

⌊
lnn
ln p

⌋
ln p (2.1)

where p are prime numbers. While the Fundamental Theorem of Arithmetic states that every
integer greater than 1 can be uniquely factorized into prime numbers up to ordering and the
logarithmic property that the logarithm of a product equals the sum of the logarithms of the factors
(log(ab) = log(a)+ log(b)) is instrumental in transforming the product of prime factors into a sum,
facilitating computation.

The method for calculating ln(LCM([1,2, ...,n])) involves:
1. Enumerating all primes up to n.
2. For each prime p, determining the highest power m such that pm ≤ n.

2.2 Arithmetic Functions and Algorithms 31

3. Summing the natural logarithms of each prime raised to its maximum power, utilizing the
property log(pm) = m log(p).

This approach yields:

ln(LCM([1,2, ...,n])) = ∑
p≤n

mp ln(p)

where mp is the maximum power of each prime p not exceeding n. By converting the LCM’s prime
factorization into a sum of logarithms, this method:

• Avoids numerical overflow, enabling the handling of large n.
• Improves computational efficiency compared to direct LCM calculation.

LCM Code Snippet
def ln_lcm_sum(n):

primes = list(primerange(1, n+1))
ln_sum = 0
for p in primes:

m = 1
while p**m <= n:

m += 1
ln_sum += np.log(p**(m-1))

return ln_sum

def ln_lcm_sequence_sum(max_n):
n_values = np.arange(1, max_n + 1)
ln_lcm_values = [ln_lcm_sum(n) for n in n_values]
return n_values, ln_lcm_values

The code employs libraries such as numpy for numerical operations and sympy for prime number
generation with the main steps being:

• Generate prime numbers up to n.
• Calculate the highest power of each prime that is ≤ n.
• Sum the natural logarithms of these primes raised to their respective highest powers to

significantly reduce computational overhead.

32 Chapter 2. Number Theory as a Data Science

2.3 The Group Un of Invertible Integers Mod n
We have noted that Euler’s totient function, φ(n) counts the positive integers up to a given integer n
that are relatively prime to n (that the two numbers share no common factors other than 1). To see it
in action consider now the group5 Un, the set of integers less than n and relatively prime to n. The
operation under which Un forms a group is multiplication modulo n, denoted as a ·b mod n. Such
an operation takes two elements from the set, multiplies them, and then finds the remainder when
this product is divided by n, effectively "wrapping around" when the product exceeds n. Formally,
Un = {a ∈ Z|1 ≤ a < n,gcd(a,n) = 1}, where gcd(a,n) denotes the greatest common divisor of a
and n.

The order of the group Un is given by φ(n), the totient function of n, because the number of
elements in Un is exactly the count of numbers less than n that are coprime to n. When n is a prime
number p, the order of the group Up is given as φ(p) = p−1 since for a prime number p, every
integer from 1 to p−1 is relatively prime6 to p.

Figure 2.6: Group of Invertibles

For Un, a unit involution is an element a for which the equation a2 ≡ 1 mod n holds true. In
other words, each element is its own inverse under the group operation, which in the case of Un is
multiplication modulo n. So for the group U8, defined as U8 = {a ∈ Z : 1 ≤ a < 8,gcd(a,8) = 1},
the unit involution property can be demonstrated as follows:

• 12 ≡ 1 mod 8
• 32 ≡ 9 ≡ 1 mod 8
• 52 ≡ 25 ≡ 1 mod 8
• 72 ≡ 49 ≡ 1 mod 8

Hence, all the elements of U8 are unit involutions because squaring each element results in an
answer equivalent to 1 modulo 8.

5Here the concept of a group is a framework for describing symmetry and operations within sets. A group consists of
a set of elements combined with an operation that joins any two elements to form a third in such a way that closure,
associativity, the existence of an identity element, and the existence of inverse elements are satisfied.

6since none of those integers share any common factors with p other than 1. For a prime number p, we simply count
all numbers from 1 up to p−1, as all of these numbers do not share any divisors with p.

2.3 The Group Un of Invertible Integers Mod n 33

The code invertiblesUn.ipynb uses SymPy Library, for its symbolic mathematics that provides
tools to work with the totient function and greatest common divisor (GCD) and Pandas Library,
to organize the elements of Un, their orders, and other properties into a structured table format and
has the following key features:

import pandas as pd
from sympy.ntheory import totient, is_primitive_root
from sympy import gcd

def find_U_n_elements_and_order(n):
elements = [a for a in range(1, n) if gcd(a, n) == 1]
order = totient(n)
involution_exists = all(pow(a, 2, n) == 1 for a in elements)
return elements, order, involution_exists

The core steps here are:
1. Determining Elements: For each n from 2 to 13, we identified the elements of Un by finding

integers less than n that are coprime to n. This involves calculating the GCD of each integer
with n and selecting those where the GCD equals 1.

2. Calculating Order: The order of each group Un is found using the totient function φ(n),
reflecting the number of elements in the group.

3. Checking Unit Involution: We examine if each element in Un satisfies the condition a2 ≡ 1
mod n, indicating a unit involution within the group.

2.3.1 Role of Un in RSA
RSA is a public-key cryptosystem widely used for secure data transmission whose security is based
on the practical difficulty of factorizing the product of two large prime numbers. Central to its
encryption and decryption mechanism is the group of invertible integers mod n, Un or (Z/nZ)∗.
The key generation process is the first step in setting up RSA encryption comprising selecting a
public key and a private key by choosing two distinct large prime numbers p and q. These primes
are essential for calculating n = pq and Euler’s totient function φ(n) = (p−1)(q−1). The value
of n is the modulus for both the public and private keys and its factorization is kept secret.

Selecting the Public Key Exponent
With the totient function, φ(n), counting the number of integers that are invertible modulo n, the
public key exponent e is chosen such that e is in Uφ(n), meaning e is coprime to φ(n) and therefore
has a multiplicative inverse modulo φ(n).

Calculating the Private Key Exponent
The private key exponent d is the multiplicative inverse of e modulo φ(n). This means ed ≡ 1
mod φ(n), which is possible because e is part of the group Uφ(n).

RSA Encryption Protocol and Key Generation
Both the public key exponent e and the private key exponent d are chosen from Un with the
encryption protocol involving three stages:

1. Key Generation - recipient generates a public key and a private key. The public key is shared
with the sender, while the private key is kept secret.

2. Encryption - sender encrypts the message using the recipient’s public key and sends the
encrypted message.

https://colab.research.google.com/drive/1w9zPinmlWpq-NyyOPqONIKTvkSuYR05t?usp=sharing

34 Chapter 2. Number Theory as a Data Science

3. Decryption - recipient decrypts the received message using their private key to recover the
original plaintext.

Stage 1: Key Generation

In the first stage, the ultimate recipient of the ciphered message uses RSA-senderGenerateKey.ipynb,
to generate a pair of keys: a public key and a private key. The public key (n,e) is shared with the
sender, while the private key (d,n) is kept secret.

Figure 2.7: Future Recipient performs Key Generation and Public Key Sharing

The public key consists of two numbers where n is the product of two randomly chosen large
primes, and e is a number such that 1 < e < φ(n) and gcd(e,φ(n)) = 1. The private key is a number
d such that ed ≡ 1 (mod φ(n)).

Stage 2: Encryption

The second stage is performed by the sender, using the code, encryptPKI.ipynb. The sender uses
the recipient’s public key to encrypt a message and creates a ciphertext.

Figure 2.8: Sender Encrypts the Message with the Public Key

The encryption process converts the plaintext message into a series of numbers based on an
agreed-upon scheme, and then each number is encrypted using the formula c ≡ me (mod n), where
m is the message and c is the ciphertext.

Stage 3: Decryption

In the final stage, the recipient decrypts the received ciphertext using decryptRSA.ipynb their
private key recovering the original plaintext from the ciphertext.

Figure 2.9: Recipient Decrypts the Ciphertext with the Private Key

Decryption utilizes the private key with the formula m ≡ cd (mod n).

Key Generation

The key generation process is crucial in RSA encryption and heavily relies on Euler’s totient
function, φ(n), where n is the product of two prime numbers p and q, with φ(n) = (p−1)(q−1)
since p and q are prime. The generate_keys function generates the keys using the sympy and
random libraries:

https://colab.research.google.com/drive/16i0CqmdvlQTjtarcD5lBFwu5wdpZszlx?usp=sharing
https://colab.research.google.com/drive/1szFYN4sDDdR8tRw61ge8Xjv0oXxp2NKh?usp=sharing
https://colab.research.google.com/drive/1ZztfN8M4xCCqd-Qv7AVs0Jdltvn787xo?usp=sharing

2.3 The Group Un of Invertible Integers Mod n 35

def generate_keys():
prime_range_start = 10**3
prime_range_end = 10**4
p = randprime(prime_range_start, prime_range_end)
q = randprime(prime_range_start, prime_range_end)
while q == p:

q = randprime(prime_range_start, prime_range_end)
n = p * q
phi_n = (p - 1) * (q - 1)
e = random.randrange(2, phi_n)
while gcd(e, phi_n) != 1:

e = random.randrange(2, phi_n)
d = mod_inverse(e, phi_n)
return (n, e), (d, n)

1. Prime numbers p and q are generated using randprime within a specified range until distinct.
2. product n = p ·q and Euler’s totient function φ(n) = (p−1)(q−1) are computed.
3. public key exponent e is selected randomly, 1 < e < φ(n) with e coprime to φ(n) using gcd.
4. private key exponent d is calculated as the mod_inverse of e modulo φ(n).
5. function returns the public key (n,e) and the private key (d,n).

RSA Encryption and Deccryption
encryptPKI.ipynb comprises an encryption function and a user-interactive segment:

def encrypt(public_key, plaintext):
n, e = public_key
ciphertext = [pow(ord(char) - ord(’A’) + 1, e, n) for char in plaintext.upper() if ’A’ <= char <= ’Z’]
return ciphertext

encrypt takes the public key and plaintext as inputs and returns the ciphertext. The public key is a
tuple (n,e), where n is the RSA modulus and e is the public exponent. The plaintext is processed to
uppercase and mapped from characters to integers with ’A’ starting at 1. Each character is then
encrypted using modular exponentiation and prompted to enter the modulus and exponent of public
key:

n = int(input("Enter the recipient’s public key part ’n’ (first part): "))
e = int(input("Enter the recipient’s public key part ’e’ (second part): "))
public_key = (n, e)
plaintext = input("Enter plaintext message to encrypt (use uppercase letters A-Z): ")
ciphertext = encrypt(public_key, plaintext)

The RSA decryption process is implemented by the decrypt function,

def decrypt(private_key, ciphertext):
d, n = private_key
plaintext = [chr((pow(char, d, n) - 1) % 26 + ord(’A’)) for char in ciphertext]
return ’’.join(plaintext)

which iterates over the ciphertext list, and for each encrypted numeric value char, applies the
RSA decryption algorithm, plaintext_char =

(
chard mod n

)
. Since the encrypted characters are

shifted by 1 during encryption (starting from ’A’ as 1), the function subtracts 1 before applying the
modulo operation with 26 and then adds the ASCII value of ’A’ to map the numbers back to letters.
The resulting list of characters, plaintext, is then concatenated to form the decrypted message,
which is returned as a string.

https://colab.research.google.com/drive/1szFYN4sDDdR8tRw61ge8Xjv0oXxp2NKh?usp=sharing

36 Chapter 2. Number Theory as a Data Science

2.3.2 Riemann Zeta Function, ζ (s)
The Riemann Zeta and Euler totient functions exhibit a formal similarity. The Euler product
representation of the Riemann Zeta function ζ (s) for Re(s)> 1:

ζ (s) = ∏
p prime

1
1− p−s

We can expand the term 1
1−p−s substituting the formula for a geometric series:

1
1− p−s = 1+ p−s + p−2s + p−3s + · · ·

into the infinite product as:

ζ (s) = ∏
p prime

(
1+ p−s + p−2s + p−3s + · · ·

)
The formal structure of the Riemann Zeta function and Euler’s totient function is notably similar.
Both involve products over primes, and both have terms of the form (1− p−α) where α is related
to the number being factored.

2.3.3 Euler’s Product form of Riemann Zeta function
Consider the Riemann zeta function for ℜ(s)> 1:

ζ (s) =
∞

∑
n=1

1
ns

Euler relates this series to a product over all primes by applying a key idea similar to the sieve of
Eratosthenes, where multiples of primes are systematically "sieved out" from a list of integers as:

ζ (s) = ∏
p prime

1
1− p−s =

(
1+

1
2s +

1
22s + · · ·

)(
1+

1
3s +

1
32s + · · ·

)(
1+

1
5s +

1
52s + · · ·

)
· · ·

= ∏
p prime

(
1+

1
ps +

1
p2s +

1
p3s + · · ·

)
The terms are the reciprocals of the powers of a prime number. To ensure that each number (and
thus each term in the series) is generated exactly once, even though each number has a unique prime
factorization the product "sieves" through all possible products of prime powers as Eratosthenes
would sieve through multiples of primes to find prime numbers. As a result, the expanded product
precisely covers every positive integer exactly once, mirroring the sum in the definition of ζ (s).
Consider step by step the first two prime factors after 2 (i.e., 3 and 5):

1. Start with the series for the prime 2, which includes all powers of 2:

1+
1
2s +

1
22s + · · ·

2. Multiply by 1
3s from the series for the prime 3:(

1+
1
2s +

1
22s + · · ·

)(
1+

1
3s

)
and so including terms like 1

3s , 1
2s·3s , etc., adding numbers that are products of 2 and 3 to the series.

2.3 The Group Un of Invertible Integers Mod n 37

Figure 2.10: Partial sums to Riemmann number s = 2,3

3. Multiply by 1
5s from the series for the prime 5:(

1+
1
2s +

1
22s + · · ·

)(
1+

1
3s

)(
1+

1
5s

)
further adding terms like 1

5s , 1
2s·5s , 1

3s·5s , etc., systematically including numbers that are products of
2, 3, and 5.

The Python code, dynamicEulerProductRiemann.ipynb for this function uses Sympy’s Rational
and the function illustrate_sieving_rational_partial_sums implements the sieve,

def illustrate_sieving_rational_partial_sums(primes, s, terms):
product_series = [Rational(1)]
partial_sums = [Rational(1)]
for p in primes:

prime_series = [Rational(1, p ** (s * i)) for i in range(terms)]
new_product_series = [sum(product_series[k] * prime_series[i - k]

for k in range(max(0, i - terms + 1),
min(i + 1, len(product_series))))

for i in range(len(product_series) + terms - 1)]
product_series = new_product_series
partial_sums.append(sum(product_series))

return partial_sums

It takes a list of prime numbers, a value s, and the number of terms to consider for each prime’s
series. Here is the functionality of the code described step by step:

1. Initialize the product series, product_series, with the rational number 1, representing
the starting point of the product before any primes are included. Initialize partial_sums
similarly to keep track of the sums as primes are added.

2. Iterate over each prime number in the provided list of primes.
3. For each prime p, construct a truncated geometric series, prime_series, with terms of the

form 1/psi, where i ranges from 0 to the specified number of terms minus one.
4. Convolve the current product_series with the prime_series to include the new prime,

mimicking the inclusion of a new factor in Euler’s product.
5. Update product_series with the new series after the convolution.
6. Compute the new partial sum by summing the updated product_series and append it to

the partial_sums.
7. After iterating over all primes, return the list of partial_sums, representing the cumulative

sums of the series after the inclusion of each prime.

https://colab.research.google.com/drive/1JEKQn6JNrnDptO2c3qDL67LXJyicS_yD?usp=sharing

38 Chapter 2. Number Theory as a Data Science

Our Mathematical Language
Let us finish this initial survey with a nod to that more lofty aim as as a mathematician, towards
which we will occasionally err, we will need to enunciate some definitions. Indeed a great deal (if
not all?) of mathematics is just definitions. The ability to typeset these notes in latex and present
mathematical formula in increasingly compact but dense format being that hallmark of mathematics
as the archetypal discovered language of the universe. Consider parenthetically to this point the
following phrasing (concerned with less rudimentary matters as the sum of the harmonic series7

-"the reciprocal of squared integers"):

ζ (2)≡ π2

6
=

∞

∑
n=1

1
n2 =

1
12 +

1
22 +

1
32 +

1
42 + · · ·

Note the use of ≡ for "Psi-two" (ζ (2) which with the symbol := indicates a definition.8 In
latex the first equation is typeset as:

\[
\zeta(2) \equiv\frac{\pi^2}{6} =& \sum_{n=1}^{\infty} \frac{1}{n^2}=
\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dotsb\]

7The infinite sum of the harmonic series when the terms are restricted to prime numbers is known as the Prime Zeta
Function:P(s) = ∑p prime

1
ps where s is a complex number with real part greater than 1. This series is a special case

of the more general Riemann Zeta Function, which was implicitly defined above for s = 2 as ζ (s) = ∑
∞
n=1

1
ns . The

Prime Zeta Function P(s) converges for values of s with real part greater than 1, similar to the Riemann Zeta Function.
However, unlike the Riemann Zeta Function, there isn’t a known simple closed-form expression for the Prime Zeta
Function in terms of familiar constants. It’s a complex function that has important connections to number theory.

8Note also the choice to use merely "=" after π2

6 which is justified given π’s more natural definition amongst it
multifarious forms.

3. Composite Numbers

“’Oh the laws of physics and of logic... the number system,...
the principle of algebraic substitution. These are ghosts.

We just believe in them so thoroughly they seem real.”
— Robert M. Pirsig, Zen and the Art of Motorcycle Maintenance[13]

Integers can be classified as in fig 3.1 into two main subsets: even and odd numbers. Even numbers
are divisible by 2 without leaving a remainder, while odd numbers have a remainder of 1 upon
division by 2. Prime numbers are positive integers greater than 1 that possess only two distinct
positive divisors. The number 2 uniquely fits this criterion among even numbers. The singularity of
2 as the only even prime number carries profound implications.

Figure 3.1: Organigram of Integers.

40 Chapter 3. Composite Numbers

I can - as is the spirit of the book - rather casually further classify positive integers according to
the labelled boxes A,B,C,D above which highlight some "apparently" arbitrary distinctions that
you may draw between odd composites: 45 = 32 ·5, 105 = 3 ·5 ·7 and even ones: 350 = 2 · (52) ·7,
210 = 2 ·3 ·5 ·7. We will collectively call these n-rectangle numbers and will elaborate soon.

I will be as casual as possible with definitions for as long as possible defining objects in both
non standard as well as standard ways. An example from the organigram being the two prime
generator classes "Fermat", Fn = 4n+1 and "Gauss", Gn = 4n+3. We know that these generators,
(in covering the odds) exhaustively generate primes do not exclusively generate them, noting
for instance the odd composites F2 = 4 ·2+1 = 32, F5 = 4 ·5+1 = 3 ·7, F6 = 52, and G8 = 5 ·7,
G9 = 3 ·13 rendering fig 3.1 a little sloppy. A moments pause and you might well ask what is it
about those choice of n, if anything, that make the prime generators fail? Why not ask: do either of
the subsets of the integers {2,5,6,8,11,12,14, ...} or {3,6,8,9,12,13,15, ...} or their intersection
{8,12,21,23,29,30, ...}? as generated by, f ailedPrimeGenerators warrant further investigation?

https://colab.research.google.com/drive/16Az1pxDfvcCKC_azLr7QxIkeDzMHr_ji?usp=sharing

41

n P4n+1 C4n+1 P4n+3 C4n+3

1 5 7

2 9 11

3 13 15

4 17 19

5 21 23

6 25 27

7 29 31

8 33 35

9 37 39

10 41 43

11 45 47

12 49 51

13 53 55

14 57 59

15 61 63

16 65 67

17 69 71

18 73 75

19 77 79

20 81 83

21 85 87

22 89 91

23 93 95

24 97 99

25 101 103

26 105 107

27 109 111

28 113 115

29 117 119

30 121 123

31 125 127

32 129 131

Table 3.1: Failed Prime Generator Composites.

42 Chapter 3. Composite Numbers

Is it worthwhile to keep asking whether the subset of "failed prime" composites, Ff p ≡{9,21,25,27,33, ...}
or G f p ≡ {15,27,35,39, ...} are of separate interest? Indeed why not ask whether the 4n+3 gener-
ator will continue to fail - as it is for these lower values of n - more often than the 4n+1 generator?
The is_prime function from: f ailedPrimeGenerators generates primes:

def is_prime(num):
if num <= 1:

return False
if num <= 3:

return True
if num % 2 == 0 or num % 3 == 0:

return False
i = 5
while i * i <= num:

if num % i == 0 or num % (i + 2) == 0:
return False

i += 6
return True

by using the function1 is_prime(num) to determine whether a given number is prime by checking
for divisibility by smaller primes up to the square root of the number.

3.1 Composites as p-rectangles, p > 1

Fig 3.1 colors consecutive integers as
blue then red from 2 to 30 and rep-
resented any composite number as a
rectangle of dots in which the shortest
side has a width that is its smallest fac-
tor divisor. That is, we see 9 = 3 · 3
and 18 = 2 ·32 and note with this inter-
laced coloring requirement, that only 2
amongst the primes is red.

The prime factorization of the integers up to 30 as generated by code: primeFactorizationRadi-
calisation is shown in the p-fac column of table 3.1. The np − rp column highlights the difference
between these two counts, which tells us the repetition of prime factors.

1It first checks for base cases: if num is less than or equal to 1, 2 or 3, returns
• Next, it checks for divisibility by 2 and 3. If num is divisible by 2 or 3 (i.e., num % 2 == 0 or num % 3 == 0),

it returns False because only the even 2 is prime, and numbers divisible by 3 are not prime.
• Then enters a loop starting from i = 5 and continues until i * i is greater than or equal to num (as prime

factors of a number cannot be greater than its square root) checking whether num is divisible by i or by i + 2
(next possible prime candidates after 3). If num is divisible by either i or i + 2, it function returns False.

• If the loop completes without finding any divisors of num, it means that num is not divisible by any integers up to
its square root, and therefore it’s a prime number. In this case, the function returns True.

https://colab.research.google.com/drive/16Az1pxDfvcCKC_azLr7QxIkeDzMHr_ji?usp=sharing
https://colab.research.google.com/drive/1GrRoo1HdhOtfSUijHZbB_MEujl4iULj4?usp=sharing
https://colab.research.google.com/drive/1GrRoo1HdhOtfSUijHZbB_MEujl4iULj4?usp=sharing

3.1 Composites as p-rectangles, p > 1 43

n p-fac np rp np − fp f f -ply factors

1 0 0 0 1 1 {1}

2 2 1 1 0 2 1 {1, 2}

3 3 1 1 0 2 1 {1, 3}

4 22 2 1 1 3 2 {1, 2, 4}

5 5 1 1 0 2 1 {1, 5}

6 2 ·3 2 2 0 4 2 {1, 2, 3, 6}

7 7 1 1 0 2 1 {1, 7}

8 23 3 1 2 4 2 {1, 2, 4, 8}

9 32 2 1 1 3 2 {1, 3, 9}

10 2 ·5 2 2 0 4 2 {1, 2, 10, 5}

11 11 1 1 0 2 1 {1, 11}

12 22 ·3 3 2 1 6 3 {1, 2, 3, 4, 6, 12}

13 13 1 1 0 2 1 {1, 13}

14 2 ·7 2 2 0 4 2 {1, 2, 14, 7}

15 3 ·5 2 2 0 4 2 {1, 3, 5, 15}

16 24 4 1 3 5 3 {1, 2, 4, 8, 16}

17 17 1 1 0 2 1 {1, 17}

18 2 ·32 3 2 1 6 3 {1, 2, 3, 6, 9, 18}

19 19 1 1 0 2 1 {1, 19}

20 22 ·5 3 2 1 6 3 {1, 2, 4, 5, 10, 20}

21 3 ·7 2 2 0 4 2 {1, 3, 21, 7}

22 2 ·11 2 2 0 4 2 {1, 2, 11, 22}

23 23 1 1 0 2 1 {1, 23}

24 23 ·3 4 2 2 8 4 {1, 2, 3, 4, 6, 8, 12, 24}

25 52 2 1 1 3 2 {1, 5, 25}

26 2 ·13 2 2 0 4 2 {1, 26, 2, 13}

27 33 3 1 2 4 2 {3, 1, 27, 9}

28 22 ·7 3 2 1 6 3 {1, 2, 4, 7, 14, 28}

29 29 1 1 0 2 1 {1, 29}

30 2 ·3 ·5 3 3 0 8 4 {1, 2, 3, 5, 6, 10, 15, 30}

44 Chapter 3. Composite Numbers

We have introduced the non-standard ply2 terminology here suggested by fig 3.1.
• 0-ply : a prime number;
• 1-ply : a composite that has only 1 rectangle representation;
• 2-ply : a composite, that has 2 distinct representations.

Note that 6 with prime divisors 2,3 , 6 = 2 ·3 ∼ 2 ·3 ≡ 3 ·2 is a 2-ply as a mere re-orientation of
dots through the commutativity of multiplication is not considered a distinct rectangle. Whereas
the associative property of multiplication tells us that 12 as the product of three prime divisors
12 = 2(·2 ·3) = (2 ·2) ·3 =∼ 2 ·6 = 4 ·3 will be a 3-pl while 30 = 2 ·(3 ·5) = (2 ·3) ·5 = 3 ·(2 ·5)∼
2 ·15 = 6 ·5 = 3 ·10 with 4 distinct rectangular representations is a 4-ply. Is that the story? That an
f-plyf-ply possesses f+1 prime factors? Pause and think of some counter examples and then look at
the end of chapter notes on Combinatorics.3

The following function is used to calculate the f-ply value, which represents the number of
ways to form distinct rectangles using the factors of a number. The second value returned by the
function (len(factors)) is used to determine the f-ply value.

def count_factors(num):
factors = set()
for i in range(1, int(num ** 0.5) + 1):

if num % i == 0:
factors.add(i)
factors.add(num // i)

return factors, len(factors)

The count_factors function calculates the factors of a given number num and returns both the set
of factors and the count of factors. Here’s a breakdown of how the function works:

• factors = set(): Initialize an empty set to store the factors of the given number.
• for i in range(1, int(num ** 0.5) + 1): Iterate through the numbers from 1 to the

square root of num. This is done to efficiently find pairs of factors for num.
• if num % i == 0: Check if the current number i evenly divides the given number num

without a remainder. If it does, then i is a factor.
• factors.add(i): Add i to the set of factors.
• factors.add(num // i): Since i is a factor of num, num // i is also a factor. For

example, if num is 12 and i is 2, then both 2 and 12 // 2 = 6 are factors of 12.
• After the loop, the set factors contains all the factors of num, including both the ones

smaller than the square root and the corresponding larger factors.
• return factors, len(factors): The function returns a tuple containing two values.

The first value is the set of factors calculated in step 6, and the second value is the count of
factors, which is the length of the set. This provides information about the number of distinct
factors that num has.

Here is a code snippet to draw Fig 3.1:

import matplotlib.pyplot as plt

plt.figure(figsize=(10, 6))
plt.axis(’off’) # Turn off the axis
spacing_x = -40 # Initial horizontal spacing
color_index = 0 # Initial color index

2A ply refers to the number of layers that a paper consists of. For toilet paper, there’s usually between one to four
layers of paper pressed together to make a parent roll.

3The square number,16 = 2 ·2 ·2 ·2 ∼ 2 ·8 = 44̇ is a 3-ply with 4 prime factors, whereas 90 with its four partially
distinct prime factors 90 = 2 ·3 ·3 ·5 ∼ 1 ·90 = 2 ·45 = 6 ·15 = 9 ·10 = 30 ·3 = 18 ·5 is a 6-ply.

3.2 The Rectangular Composites 45

for i in range(1, 31):
color = "blue" if color_index == 0 else "red"
if is_prime(i):

shift_right = 1
vertical_height = i

else:
lowest_factor = lowest_prime_factor(i)
shift_right = lowest_factor if lowest_factor is not None else 1
vertical_height = i // (shift_right if shift_right is not None else 1)

The line items after the else clause determine how the dots should be positioned vertically for
both prime and composite numbers in the visualization, considering the shift for composites and
the vertical height for both cases.

3.2 The Rectangular Composites

The composites 12 = 2×6 = 4×3 and 14 = 2×7 are respectively 2-ply and 1-ply numbers.

.

.

. . . .

We define the following in order to make clear the distinctions between composites:

Definition 1 Proper Factors of a Composite Number c are the subset of divisors of c which are not
c itself. For 12, whose divisors are 1, 2, 3, 4, 6, and 12 has proper factors 1, 2, 3, 4, and 6.

Definition 2 Rectangular Number Is a composite number that can be arranged into a rectangle
with integer dimensions greater than 1. Six can be arranged in a rectangle with dimensions 2×3.

Definition 3 Oblong Number is a rectangle numbers whose area is the product of two consecutive
integers, represented as n(n+1). Twelve is the product of the consecutive integers 3 and 4.

Definition 4 Semi-Prime Number is a singular (1-ply) rectangle number that is the product of two
prime numbers. The two primes can be identical so 9 = 3×3, is semi and square.

Definition 5 Non-square Deficient Number is rectangle number that is deficient, meaning the sum
of its proper divisors (excluding itself) is less than the number itself. 14 is not a perfect square with
three proper divisors 1, 2, and 7 summing to 10, which is less than 14.

46 Chapter 3. Composite Numbers

3.2.1 Bubble chart of Semi-prime Totients

Semi-primes are of particular interest
in number theory and cryptography
due to their role in prime factorization
problems. The plot is of the distribu-
tion of semi-primes up to 1000, where
each point represents a semi-prime com-
posed of two prime factors p and q.
The x-axis and y-axis correspond to the
smaller and larger prime factors of the
semi-primes, respectively. The size of
each point is proportional to the totient
of the semi-prime, while the color indi-
cates the nature of its Mobius function
value - red for semi-primes with square
factors and green for others.

Figure 3.2: Totients of Semi-Primes
The mobius function overleaf determines the free-of-square condition of an integer taking a single
integer argument n and returning a value based on the prime factorization of n.

def mobius(n):
if n == 1:

return 1
factors = set()
for p in primerange(1, n + 1):

if p*p > n:
break

if n % p == 0:
n //= p
if n % p == 0:

return 0 # Square factor found
factors.add(p)

if n > 1:
factors.add(n)

return -1 if len(factors) % 2 else 1

The function immediately returns 1 if n is 1, and:
• A set called factors is initialized to keep track of unique prime factors of n.
• A loop iterates through the prime numbers up to n using the primerange function which is

sufficient because prime factors of n cannot exceed n itself.
• If the square of the current prime number exceeds n, the loop breaks, optimizing the function

by avoiding unnecessary iterations.
• Within the loop, if n is divisible by the current prime p, n is divided by p. If n is still divisible

by p, this implies p2 is a factor, it returns 0, indicating that n has a squared prime factor.
• If n does not have a squared prime factor, the prime p is added to the set of factors.
• After the loop, if n is greater than 1, n is itself a prime and is added to the set of factors.
• returns −1 if the number of unique prime factors is odd, and 1 if even.

3.2 The Rectangular Composites 47

Finding Semi-Primes
The semi_primes_and_mobius function identifies semi-prime numbers within a given range and
computes their Mobius and totient values:

def semi_primes_and_mobius(limit):
primes = list(primerange(1, int(np.sqrt(limit)) + 1))
semi_primes = []
for i in range(len(primes)):

for j in range(i, len(primes)):
prod = primes[i] * primes[j]
if prod <= limit:

mu_val = mobius(prod)
phi_val = totient(prod)
semi_primes.append((primes[i], primes[j], prod, mu_val, phi_val))

return semi_primes

• Generating a list of prime numbers up to the square root of the limit, as any semi-prime less
than or equal to the limit will have factors no greater than this value.

• Iterating over pairs of these primes to find their products, which are the semi-primes.
• Calculating the Mobius value (mu_val) to check if the semi-prime has square factors and

the Euler’s totient value (phi_val), which represents the count of numbers less than the
semi-prime that are coprime to it.

• Storing the pair of primes, their product (the semi-prime), and the calculated values in a list.

Visualizing Semi-Primes
The following code snippet focuses on bubble sizes, centering, and labeling scaling the totient
values so as to adjust bubble sizes and color encoding the Mobius function value. The labels are
carefully centered within each bubble and logarithmic scaling ensures bubble sizes are proportionate
when the range of totient values is large.

In order to dynamically generate the necessary attributes for each point in the scatter plot,
list comprehensions are used to iterate through a list of tuples, here semi_primes_info contains
information about (p,q,semi-prime,µ(n),φ(n)), where p and q are the prime factors of the semi-
prime, µ(n) is the Mobius function value, and φ(n) is the Euler’s totient function value for the
semi-prime.

x = [item[0] for item in semi_primes_info] # p values
y = [item[1] for item in semi_primes_info] # q values
sizes = [np.log(int(item[4]) + 1) * 100 for item in semi_primes_info]
colors = [’red’ if item[3] == 0 else ’green’ for item in semi_primes_info]

plt.figure(figsize=(12, 10))
scatter = plt.scatter(x, y, s=sizes, c=colors, alpha=0.6)

labels = [item[2] for item in semi_primes_info]
for i in range(min_length):

plt.annotate(labels[i], (x[i], y[i]), fontsize=8, ha=’center’, va=’center’)

The variable item in the list comprehension is a placeholder for the current tuple from the list.
Square brackets item[] are used to access specific elements within the tuple by their index where
indexing starts at 0 and so item[0] refers to the first element:

48 Chapter 3. Composite Numbers

• x = [item[0] for item in semi_primes_info] extracts the first prime factor p from
each tuple, creating a list of x-coordinates for the scatter plot.

• y = [item[1] for item in semi_primes_info] extracts the second prime factor q
from each tuple, creating a list of y-coordinates for the scatter plot.

• sizes = [np.log(int(item[4]) + 1) * 100 for item in semi_primes_info]
computes the sizes of the scatter plot bubbles by applying a logarithmic scale to the totient
values (φ(n)). The totient value is accessed with item[4], incremented by 1 to avoid taking
the logarithm of 0, and then multiplied by 100 to scale the bubble size appropriately for
visualization. It also converts totient values from sympy.Integer to the standard Python
int type which is necessary because the sympy.Integer type is not compatible with the
NumPy log function.

• colors = [’red’ if item[3] == 0 else ’green’ for item in ...] determines
the color of each bubble based on the Mobius function value µ(n). If item[3] (the Mobius
function value) is 0, indicating a square factor in the semi-prime, the bubble is colored red;
otherwise, it is green.

• labels = [item[2] for item in semi_primes_info] retrieves the semi-prime num-
ber itself from each tuple to use as labels for the scatter plot points.

3.2 The Rectangular Composites 49

3.2.2 Semi-prime Perimeter to Area ratios

The following table is a product of this code and lists those 1-ply semi-primes that can only be
presented as one type of rectangle.

Number Divisors P/A

6 (2, 3) 1.67

8 (2, 4) 1.50

10 (2, 5) 1.40

14 (2, 7) 1.29

15 (3, 5) 1.07

21 (3, 7) 0.95

22 (2, 11) 1.18

26 (2, 13) 1.15

27 (3, 9) 0.89

33 (3, 11) 0.85

34 (2, 17) 1.12

35 (5, 7) 0.69

38 (2, 19) 1.11

39 (3, 13) 0.82

46 (2, 23) 1.09

51 (3, 17) 0.78

Table 3.2: List of numbers, their divisors, and corresponding P/A values.

The scatter plot that summaries this table follows

https://colab.research.google.com/drive/11RCMzUf9YWHCnyrms6R2XRY0ZKYQnkcq?usp=sharing

50 Chapter 3. Composite Numbers

Figure 3.3: Primes and Composites.

3.2.3 Divisor Density Ratio

A non standard metric that might provide additional insight into a number’s combinatorial properties
is what we term as the number’s Divisor Density Ratio (DDR).

Definition 6 Divisor Density Ratio (DDR) Given a number a, let m represent the multiplicity of the
number, or the number of unique ways it can be expressed as the sum of its proper divisors. The
DDR is then defined as: DDR(a) = m

a

This ratio measures the combinatorial efficiency of a number. A higher DDR indicates that,
relative to its magnitude, the number can be represented in many ways using its divisors. A striking
example of a relatively small number with an unusually high DDR is 360. Its prime factorization
is given by 360 = 23 ×32 ×5. This leads to a significant number of divisors, precisely 24 if we
include 1 and 360 itself. The formula to determine the total number of divisors of a number based
on its prime factorization is: d(n) = (a1 +1)(a2 +1) . . .(ak +1) For 360, this results in:

d(360) = (3+1)(2+1)(1+1) = 24

It is the diverse ways in which these divisors can be grouped to sum to 360 that results in its high
DDR. 360 boasts a staggering 22,208 unique combinations from its divisors.

3.3 Highly Composite and Super abundant Numbers 51

Figure 3.4: Primes and Composites.

The relative anomaly of 360 and its
exceptionally high DDR suggests
metrics offer fresh ways to assess and
appreciate numbers beyond traditional
divisibility properties.

DiversityDensityRatioOfAbundant
Numbers.ipynb delivers the semi-log
plot of Fig 3.4s.

a m a/m (DDR)

360 22208 61.69

240 2157 8.99

336 1554 4.62

180 751 4.17

120 278 2.32

252 516 2.05

288 469 1.63

300 446 1.49

168 197 1.17

Table 3.3: Abundant numbers whose DDRs> 1

3.3 Highly Composite and Super abundant Numbers
Definition 4 Highly Composite number is defined as a positive integer that has more divisors
than any smaller positive integer than itself. The prime factorization of highly composite number
greater than 36 appears to follow the form n= pa1

1 pa2
2 . . . pak

k , where pi are distinct prime numbers
and ai are their corresponding exponents such that a1 ≥ a2 ≥ . . . ≥ ak, and typically, the last
exponent ak = 1.

As such Highly Composite numbers, HCN are antonyms of prime numbers. The stacked chart
below illustrates their prime factorization. Each segment of the bar represents the power of a prime
factor, and the height of the stack corresponds to the total number of times all such prime factors
appear. The different colors in each stack represent the different prime factors and note that the

https://colab.research.google.com/drive/1JSVSTLrUzGkSCDuZq0ZSb_80b0FYncA?usp=sharing
https://colab.research.google.com/drive/1JSVSTLrUzGkSCDuZq0ZSb_80b0FYncA?usp=sharing

52 Chapter 3. Composite Numbers

blocks never become longer as we add them to lower ones indicative of a result of Ramanunjan,
https://archive.lib.msu.edu/crcmath/math/math/h/h269.htm[20].

Figure 3.5: Stack Chart of Highly Composite Numbers.

find_highly_composite_numbers(n) function in HighlyCompositeNumbers.ipynb calculates
all highly composite numbers up to a specified limit n. It contains a nested function count_divisors(num)
that determines the number of divisors for a given integer num by iterating up to its square root and
counting divisors in pairs to optimize the process.

def find_highly_composite_numbers(n):
def count_divisors(num):

divisors = 0
for i in range(1, int(num**0.5) + 1):

if num % i == 0:
divisors += 2 if num // i != i else 1

return divisors

The main function maintains a list, highly_composite_numbers, to store the highly composite
numbers identified and a variable, max_divisors_so_far, to keep track of the largest num-
ber of divisors found for any number and then iterates over every number from 1 to n, calling
count_divisors(i) for each number i.

highly_composite_numbers = []
max_divisors_so_far = 0
for i in range(1, n + 1):

divisors_count = count_divisors(i)
if divisors_count > max_divisors_so_far:

highly_composite_numbers.append(i)
max_divisors_so_far = divisors_count

return highly_composite_numbers

https://archive.lib.msu.edu/crcmath/math/math/h/h269.htm
https://colab.research.google.com/drive/16QNoTk9UsTUGrPdGXryHwkjK-taiVZYL?usp=sharing

3.3 Highly Composite and Super abundant Numbers 53

If a number i has more divisors than any previous number (i.e., more than max_divisors_so_far),
it is appended to the list of highly composite numbers, and max_divisors_so_far is updated to
reflect the new maximum number of divisors encountered.

The code HighlyCompositeNumberOblongs.ipynb delivers the following table:

HCN Prime Factorization Is Oblong

1 False

2 2 True

4 22 False

6 2×3 2×3

12 22 ×3 3×4

24 23 ×3 False

36 22 ×32 False

48 24 ×3 False

60 22 ×3×5 False

120 23 ×3×5 False

Table 3.4: Table of Highly Composite Numbers (HCN), their prime factorizations, and whether
they are Oblong.

Problem 3.1 Amongst the beginning of the list of Highly Composite Numbers are two consecutive
Oblong numbers 6 = 2×3 and 12 = 3×4. Does this happening again?

Definition 5 Superabundant Number is a positive integer for which the sum of divisors (inclusive
of the number itself) divided by the number is greater than that for any smaller positive integer.

For the Divisor Function, σ(n) we have that σ(n)
n exceeds σ(k)

k for all k < n, which means that
the number is superabundant if σ(n)/n > σ(k)/k for every positive

https://colab.research.google.com/drive/1PAzH8Jvlo1DLJu8Jg-02zmrOVWTVbC7f?usp=sharing

54 Chapter 3. Composite Numbers

Figure 3.6: Scatterplot of Highlighted Superabundant Numbers.

A superabundant number is not just about having many divisors; it’s about having a sum of
divisors that is large relative to the number itself, more so than for any smaller number. The code,
superAbundant.ipynb draws the scatterplot

The function sum_of_divisors(n) is defined to calculate the sum of all positive divisors of
an integer n, which includes both 1 and n itself. The function works as follows:

def sum_of_divisors(n):
total = 0
for i in range(1, n + 1):

if n % i == 0:
total += i

return total

For a given input n, the function initializes a variable total to 0, which accumulates the sum
of divisors. It iterates over all integers from 1 to n and adds i to total if i is a divisor of n, which is
checked by the condition n%i == 0.

The plot_superabundant_numbers(limit) function plots the ratios of the sum of divisors
to the number for each integer up to a given limit. The essential steps of the function are:

def plot_superabundant_numbers(limit):
ratios = []
max_ratio = 0
superabundant_numbers = []

https://colab.research.google.com/drive/13SwzcljFRNA_ILSoChFRLBP6Mmnh5x-z?usp=sharing

3.3 Highly Composite and Super abundant Numbers 55

for n in range(1, limit + 1):
ratio = sum_of_divisors(n) / n
ratios.append(ratio)

if ratio > max_ratio:
max_ratio = ratio
superabundant_numbers.append(n)

The function maintains a list called ratios to store the ratio σ(n)/n for each n, where σ(n) is
the sum of divisors of n. It keeps track of the highest ratio found so far in max_ratio. For each
number n, if the computed ratio is greater than max_ratio, then n is considered superabundant,
and n is added to the list superabundant_numbers.

56 Chapter 3. Composite Numbers

3.3.1 Roundness
Definition 6 Roundness of a number, n is defined as the sum of the powers of its prime factors
expressed as n = pa1

1 · pa2
2 · . . . · pak

k , where pi are prime numbers and ai are their respective
powers, so that the roundness r of the number n is given by r = a1 +a2 + . . .+ak.

Here are the roundness calculations for selected numbers:
• Number 8: Prime Factorization: 8 = 23, Roundness: r = 3.
• Number 18: Prime Factorization: 18 = 21 ·32, Roundness: r = 1+2 = 3.
• Number 32: Prime Factorization: 32 = 25, Roundness: r = 5.

The code, regressionCompositeRoundness.ipynb delivers the following plot:

Figure 3.7: roundness of first 1,000,000 numbers.

The regression equation in logarithmic-linear space, y = 3.32x, where x = log10(n), translates
to a power law in the original non-logarithmic space:

n = 10
y

3.32

This indicates that the number n scales with the power of 10 to the roundness value y divided
by the slope of the linear fit.

We can also plot these on a golden spiral where each point represents a number, and the color
of the point corresponds to the number’s roundness value. A distinct color is assigned to each
roundness value, with a total of 12 colors used to represent roundness values from 0 to 12. The
color mapping is as follows:

• Roundness 0 is colored Black.
• Roundness 1 is colored Blue (Code: #1f77b4).
• Roundness 2 is colored Orange (Code: #ff7f0e).
• Roundness 3 is colored Green (Code: #2ca02c).
• ... (additional colors and roundness values would continue similarly) ...
• Roundness 12 is colored Dark Red (Code: #8B0000).

https://colab.research.google.com/drive/1fMe8324SkYd4vrcx0mdMIEoDV9xYPIPn?usp=sharing

3.3 Highly Composite and Super abundant Numbers 57

Figure 3.8: roundness of first million numbers.

Roundness is determined in the following function

def calculate_roundness_up_to_n(n):
roundness_values = [0] * (n + 1)

for i in range(2, n + 1):
if roundness_values[i] == 0: # i is prime

Set roundness for all multiples of the prime
for j in range(i, n + 1, i):

power = 0
number = j
while number % i == 0:

number //= i
power += 1

roundness_values[j] += power

return roundness_values

The function iterates through the first n numbers, identifying prime numbers and their multiples.
For each multiple of a prime, it calculates the power to which the prime divides the number (i.e.,
the roundness of the number with respect to that prime factor) and sums these powers to obtain the
total roundness.

58 Chapter 3. Composite Numbers

3.4 Fermat’s Little Theorem

Fermat’s Little Theorem states that for any prime number p and any integer a not divisible by p,
the following holds:

ap−1 ≡ 1 (mod p) (3.1)

Fermat’s Little Theorem provides a way to test if a number is likely prime, but it is not foolproof
when used alone due to the existence of Fermat pseudoprimes. For actual prime numbers, however,
the theorem holds for all appropriate bases. Consider the prime number p = 7. With base a = 3,
Fermat’s Little Theorem states:

37−1 ≡ 1 (mod 7) (3.2)

Computing this, we find that 36 = 729, which indeed satisfies:

729 ≡ 1 (mod 7) (3.3)

This illustrates that for true prime numbers, Fermat’s Little Theorem is always satisfied for any
base a coprime to p.

Pseudoprimes
However, there exist composite numbers (non-primes) for which this congruence relation still holds
for certain bases a. These are known as Fermat pseudoprimes to the base a, abbreviated as psp(a).
For instance, consider the composite number n = 341. For the base a = 2, we find that:

2340 ≡ 1 (mod 341) (3.4)

Although 341 (which is 11×31) is not a prime, it satisfies Fermat’s condition for base 2, making
it a Fermat pseudoprime to base 2, or a Poulet Number, psp(2)s, named after the mathematician
Poulet which are composite numbers n such that:

2n−1 ≡ 1 (mod n) (3.5)

Poulet numbers are significant as they show the limitations of Fermat’s Little Theorem for
primality testing. While a prime number will satisfy the condition ap−1 ≡ 1 (mod p) for any
integer a not divisible by p, Poulet numbers are composite yet they satisfy the condition for
a = 2, misleadingly indicating they are prime. These numbers are significant in number theory
and cryptography because they serve as exceptions to Fermat’s Little Theorem, highlighting its
limitation for primality testing.

Table of Pseudoprimes Per Base
The table below lists pseudoprimes for prime bases up to 29 and is produced by BasePseudo-
Prime.ipynb. Notably, the pseudoprimes for base 2 are Poulet numbers, which are composite
numbers that satisfy Fermat’s Little Theorem for base 2.

https://colab.research.google.com/drive/1mHn_ttPt7FWu6tcS14sY_9tXdsgh7J5Z?usp=sharing
https://colab.research.google.com/drive/1mHn_ttPt7FWu6tcS14sY_9tXdsgh7J5Z?usp=sharing

3.4 Fermat’s Little Theorem 59

Base 2 3 5 7 11 13 17 19

psp 341 91 4 6 10 4 4 6

561 121 124 25 15 6 8 9

645 286 217 325 70 12 9 15

1105 671 561 561 133 21 16 18

1387 703 781 703 190 85 45 45

1729 949 1541 817 259 105 91 49

1905 1105 1729 1105 305 231 145 153

2047 1541 1891 1825 481 244 261 169

2465 1729 2821 2101 645 276 781 343

2701 1891 4123 2353 703 357 1111 561

Analysis of Pseudoprime Remainders
The spider plot illustrates the remainders of an−1 mod n for prime bases a up to n−1, where n is
a chosen pseudoprime. Each ’spoke’ on the plot represents a prime base, and the radial distance
from the center of the plot corresponds to the logarithm of the remainder for that base.

For a pseudoprime n, certain bases will yield a remainder of 1, suggesting that n exhibits
prime-like characteristics for these bases, despite being composite. The plot’s logarithmic scale
emphasizes the differences in remainders, making it easier to spot the bases where the remainder is 1
(as they align with the center of the plot). The significance of base 2 in the context of pseudoprimes
is highlighted by the fact that a pseudoprime to base 2, often referred to as a Poulet number,
deceives the base 2 Fermat primality test. Poulet numbers are a specific subset of pseudoprimes for
which 2n−1 ≡ 1 mod n. The code, SpiderPseudoprimes.ipynb generate this plot and to analyze the
remainders is provided below:

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sympy import primerange, isprime

List of the first 10 Fermat pseudoprimes to base 2
pseudoprimes = [...]

def analyze_pseudoprime(pseudoprime):
... # (Python code that generates the plot and DataFrame)

selected_pseudoprime = 341
df_remainders = analyze_pseudoprime(selected_pseudoprime)
print(df_remainders.head(20))

An example spider plot for the pseudoprime n = 341 is shown below.

https://colab.research.google.com/drive/1aoohmTTuybRUMehm0I3N0SZjeLCyHLel?usp=sharing

60 Chapter 3. Composite Numbers

Figure 3.9: Log-Scaled Remainders of a340 mod 341 for Prime Bases a

The spider plot illustrates the logarithmically scaled remainders of a342 mod 343 for various
prime bases a. Notably, for base 19, which is a factor of 342 (19× 18 = 342), we observe a
remainder of 1, in accordance with Fermat’s Little Theorem.

For base 7, we may note that since 343 is a perfect cube of 7 (73), the theorem would predict a
remainder of 1, because 7342 is equivalent to (73)114, and any integer power of 343 will be congruent
to 1 modulo 343. The spider plot shows a remainder that is close to 10−2 on the logarithmic
scale, indicating a computational rounding error or a precision limitation in the calculation, as
mathematically, the remainder should indeed be 1.

343 is not prime since 343 = 73, and while it is a composite number it does not satisfy the
second criterion due to the lack of coprimality:

GCD(7,343) = 7 ̸= 1

Because 7 and 343 share a common factor (which is 7 itself), they are not coprime, 7342

mod 343 = 1. Since one of the key features of pseudoprimes is that they should appear prime for a
base to which they are coprime, 343 does not exhibit this characteristic with respect to base 7.

For a number to be a pseudoprime to a given base, it should "fool" Fermat’s Little Theorem by
satisfying the congruence even though it is composite. 343 fails to "fool" the theorem in base 7
because the theorem’s congruence holds trivially for any power of 343 when reduced modulo 343.
Therefore, while 343 does satisfy the congruence an−1 ≡ 1 mod n for base 7, it does not do so as a
pseudoprime; rather, it does so as a consequence of its own factorial structure being a cube of 7.

3.4.1 Carmichael Numbers as Odd Pseudoprimes
A Carmichael number is an odd composite number n that satisfies the congruence

an−1 ≡ 1 mod n (3.6)

3.4 Fermat’s Little Theorem 61

Figure 3.10: Log-Scaled Remainders of a342 mod 343 for Prime Bases a

for every integer a that is relatively prime to n, i.e., gcd(a,n) = 1. This property makes them
pseudoprimes to any base that is relatively prime to them. While all Carmichael numbers are
pseudoprimes, not all pseudoprimes are Carmichael numbers. Carmichael numbers are a special
class of odd pseudoprimes exhibiting the aforementioned property for all a coprime to n. This is in
contrast to general pseudoprimes, which may only satisfy the congruence for certain values of a. It
is this universality that distinguishes Carmichael numbers and makes them particularly deceptive in
primality testing, as they pass the Fermat primality test for every choice of a coprime to n.

3.4.2 Three-Factor Carmichael Numbers
A subset of Carmichael numbers, cuboid Carmichael numbers, being square-free and with an odd
number (three) of distinct prime factors has a Möbius function µ(n) =−1, can be visualized as
"cuboids" in the space of prime numbers, where each dimension corresponds to one of the prime
factors. These three-factor Carmichael numbers are of the form (6k+1)(12k+1)(18k+1), under
the condition that each factor is a prime number. This specific form is of interest because, once one
prime factor is fixed, the number of possible Carmichael numbers that can be constructed is finite.
The following table lists the first five cuboid Carmichael numbers

The code, carmichael.ipynb process of generates the first 25 Carmichael numbers, including
the first five of the three-factor form, and involves several key steps:

1. Identify composite numbers that are not prime.
2. For each composite number n, check if it satisfies an−1 ≡ 1 mod n for all a such that

1 < a < n and gcd(a,n) = 1. This identifies n as a Carmichael number.
3. For generating three-factor Carmichael numbers of the form (6k+ 1)(12k+ 1)(18k+ 1),

iterate through values of k and check if each of the factors is prime. If all three factors are
prime, the product is a Carmichael number of the desired form.

https://colab.research.google.com/drive/1JFEJ8NR4B72GbJcL0vd5KcQvp15-hvQF?usp=sharing

62 Chapter 3. Composite Numbers

k Prime Factors Carmichael Number

1 (7,13,19) 1729

6 (37,73,109) 294409

35 (211,421,631) 56052361

45 (271,541,811) 118901521

51 (307,613,919) 172947529

Table 3.5: First five Carmichael cuboid numbers

def is_carmichael(n):
if isprime(n):

return False
Check if n satisfies Fermat’s Little Theorem for all a < 100 and relatively prime to n
for a in range(2, min(n, 100)):

if gcd(a, n) == 1 and pow(a, n-1, n) != 1:
return False

return True

def find_first_five_carmichael():
carmichael_numbers = []
for n in count(start=2): # Start checking from the first composite number

if is_carmichael(n):
carmichael_numbers.append(n)

if len(carmichael_numbers) == 25:
break

return carmichael_numbers

3.4.3 Nearly Square number maneuvers

12 by virtue of having a 12 = 3×4 (nearly square) representation is referred to in the literature as
an oblong number while 14 by virtue of just having 1 rectangular representation is referred to as a
semi-prime number. Consider the difference of two adjacent square numbers, 4 and 5

(52 −42) = (25−16) = 9 = (4+5)(722 −712) = (5184−5041) = 143 = (71+72)

which is easily seen and pictured to be the case for all n by noting the difference of the squares of n
and n+1 is the sum of the two consecutive numbers, n and n+1

n2 − (n−1)2 = n2 −n2 +2n−1

= 2n−1 = n+(n−1),

3.4 Fermat’s Little Theorem 63

Figure 3.11: Difference of consecutive square numbers.

This is implemented using the patches module in matplotlib which provides classes for drawing
primarily 2D shapes like rectangles, circles and polygons with the checkerboard being drawn in
code4.

for i in range(n):
for j in range(n):

if (i+j) % 2 == 0:
color = "lightgray"

else:
color = "beige"

ax[0].add_patch(patches.Rectangle((i, j), 1, 1, facecolor=color)

Then draw an outer rectangle of size n×n with edgecolor "orange" and no fill

ax[0].add_patch(patches.Rectangle((0, 0), n, n,
facecolor="none", edgecolor="orange", linewidth=2))

setting the x/y-axis limits of ax[0] to [−1,n+1] the title of ax[0] to ”n×n Square" and the aspect
ratio of ax[0] to equal before Turning off the axis, ax[0]:

ax[0].set_xlim(-1, n + 1)
ax[0].set_ylim(-1, n + 1)
ax[0].set_title(f"{n}x{n} Square")
ax[0].set_aspect(’equal’, adjustable=’box’)
ax[0].axis("off")

4Difference of Consecutive Squares.ipynb

https://colab.research.google.com/drive/165JL14TwSa0096RSHs2QAAj7upY4ipCT?usp=sharing

64 Chapter 3. Composite Numbers

Difference of Two Squares

Consider D ∈ N, D = {1,3,4,5,7,8,9, . . .} formed of the differences obtained by subtracting the
square of any one integer from the square of another, larger integer,

• The difference between 12 and 02 is 1−0 = 1.
• The difference between 12 and 22 is 4−1 = 3.
• The difference between 22 and 32 is 9−4 = 5.
• The difference between 32 and 42 is 16−9 = 7.
• The difference between 12 and 32 is 9−1 = 8.
• The difference between 32 and 52 is 25−16 = 9.

It is the first difference between two quadratic series, a2 −b2:
b Series: b2 where b = 1,2,3, . . . generates the square numbers: 1, 4, 9, 16, 25, . . .
a Series: a2 where a = 1+d,2+d,3+d, . . . is set of square numbers, albeit displacement by d.
Now every square number is either a multiple of four or one more than a multiple of four, depending
on whether it is a square of an even or an odd number, [asti2001]. If n is even, n2 is a multiple of 4
while if n is odd, n2 is one more than a multiple of 4 so every element of D is one of either three
cases: a multiple of four, 4k one or three more than its multiple, 4k+1, 4k+3:

Case 1: D(4k)

n is expressible as (n/4+1)2 − (n/4−1)2, so for example, n = 16, k = 4 we have:

D(k) =
(

4k
4
+1
)2

−
(

4k
4
−1
)2

and so D(4) = 52 −32 = 16.

Case 2: D(4k+1)

n is expressible as (n+ 1
2)

2 − (n− 1
2)

2, so for n = 9, k = 2:

D(k) =
(

4k+1+
1
2

)2

−
(

4k+1− 1
2

)2

and so D(2) =
(

19
2

)2

−
(

17
2

)2

= 18

Case 3: D(4k+3)

n is again expressible as
(
n+ 1

2

)2 −
(
n− 1

2

)2 so for n = 15, k = 3:

D(k) =
(

4k+3+
1
2

)2

−
(

4k+3− 1
2

)2

and so D(3) =
(

31
2

)2

−
(

29
2

)2

= 30.

For D 5 to represent a difference of squares, a and b must be distinct; hence, b > a. Specifically,
given two integers a and b where a > b, we can expect:

• 4k category is the most numerous since the square of an even number is always a multiple of
4, any difference a2 −b2 where both a and b are even will fall into this category. There are
more combinations of even numbers that can produce differences of the form 4k.

• 4k+1 category should be less numerous because it requires one of the numbers, either a or
b, to be even and the other to be odd as the square of an even number is a multiple of 4, while
the square of an odd number is of the form 4m+1.

5The differences D can be either odd or even, depending on the values of b and b. Notably, when b and a are
consecutive integers, D as we have just seen is always odd because it represents the difference between consecutive
square numbers, which always yields an odd number. Over the long run, one might expect to observe a prevalence
of more odd numbers than even numbers among the differences as each time a and b are consecutive, the resulting
difference is odd, and as a increases, there are numerous instances where a and b are consecutive. In contrast, for D to be
even, a and b need to be further apart, which happens less frequently than them being consecutive.

3.4 Fermat’s Little Theorem 65

• 4k+ 3 category is expected to be the least numerous since it requires both a and b to be
odd. Given that the square of an odd number is 4m+1, the difference (4m+1)− (4n+1)
simplifies to 4(m− n), a multiple of 4 we should observe 4k + 3 only when there is an
additional 3 involved in the difference.

The code, 4kraceDifferenceOfTwoSquares.ipynb delivers the following stacked histogram chart:

Figure 3.12: Stacked Histogram of Differences of Squares by Residue Category.

plot_stacked_histogram plots an absolute frequency stacked histogram:

def plot_stacked_histogram(residues, bins=10):
min_edge = min(min(residues[’4k’]), min(residues[’4k+1’]), min(residues[’4k+3’]))
max_edge = max(max(residues[’4k’]), max(residues[’4k+1’]), max(residues[’4k+3’]))
bin_edges = np.linspace(min_edge, max_edge, bins)
data = [residues[’4k’], residues[’4k+1’], residues[’4k+3’]]
colors = [’red’, ’blue’, ’green’]
labels = [’4k’, ’4k+1’, ’4k+3’]
plt.hist(data, bins=bin_edges, stacked=True, color=colors, label=labels, alpha=0.75)

taking the data for each residue category and plotting them in stacks on the same bin, with the
height of each colored segment representing the absolute number of occurrences in that bin:

• Determines bin edges spaced between minimum/maximum values across residue categories.
• Prepares the data for stacking by categorizing them into ’4k’, ’4k+1’, and ’4k+3’.
• Plots the histogram using the plt.hist function with the stacked=True parameter.

plot_proportional_stacked_histogram overleaf presents a proportional view in which the
stack’s height represents the percentage contribution of that category to the bin’s total, normalized
such that the sum of the stacks in each bin is equal to 100%. The bin’s width is implicitly defined
by the choice of the number of bins parameter, bins=10. The function:

• Flattens the list of all residue categories to determine the bin edges, which are again linearly
spaced between the minimum and maximum values.

• Calculates weights for normalization.
• Plots weighted histogram using plt.hist with proportional frequency weights.

https://colab.research.google.com/drive/1GrPQPfkSzbiZRA0n2b4HAHzETVSxzsg0?usp=sharing

66 Chapter 3. Composite Numbers

Figure 3.13: Proportional Stacked Histogram of Differences of Squares by Residue Category.

def plot_proportional_stacked_histogram(residues, num_bins):
all_values = [val for sublist in residues.values() for val in sublist]
min_edge = min(all_values)
max_edge = max(all_values)
bin_edges = np.linspace(min_edge, max_edge, num_bins)
total_counts = len(all_values)
weights_4k = np.ones_like(residues[’4k’]) / total_counts
weights_4k1 = np.ones_like(residues[’4k+1’]) / total_counts
weights_4k3 = np.ones_like(residues[’4k+3’]) / total_counts
plt.hist([residues[’4k’], residues[’4k+1’], residues[’4k+3’]], bins=bin_edges,

weights=[weights_4k, weights_4k1, weights_4k3],

stacked=True, color=[’red’, ’blue’,’green’],

label=[’4k’, ’4k+1’, ’4k+3’], alpha=0.75)

While one function counts differences, the other delivers the percentage each category con-
tributes to the total within each bin, thus normalizing the data. The selection of the number of bins
affects the width of each bin and, consequently, the distribution of the data points within them. In
the proportional stacking approach, a larger number of bins could lead to a finer granularity in
the histogram, while a smaller number may group more data points into wider bins. The ‘alpha‘
parameter, set within the call to plt.hist, directly influences the visual output by adjusting the
opacity level of the colors. An ‘alpha‘ value of 1 would result in fully opaque colors, while an
‘alpha‘ value closer to 0 increases transparency.

Function Parameter Handling in Python

In Python, functions can be defined with default arguments, allowing them to be called with fewer
arguments than the number of parameters specified during function definition:

def plot_stacked_histogram(residues, bins=10):

3.4 Fermat’s Little Theorem 67

This is useful for providing common defaults for functions that may need to be configured differently
on every call. While the bins parameter6 is a part of the function signature, the actual function
call, plot_stacked_histogram(residues), does not explicitly pass the bins parameter. Rather,
bins is assigned a default value of 10 which acts as a fallback when the function is called without
a second argument. When a function is defined with default arguments, Python creates a function
object that contains a tuple representing default values for parameters. Upon function invocation, the
arguments passed are matched positionally to the parameters. For any missing arguments, Python
retrieves the corresponding default value from the tuple and uses it in the function’s execution
context.7

Diophantine connection
The is directly related to finding integer solutions to the Diophantine equation of the form

z2 − y2 − k = 0.

Given a specific k, we can find z and y such that the difference of their squares is equal to k and
characterization of D ensures that we can always find such z and y if k is of the form 4k,4k+1, or
4k+3.

Counting Distinct Numerical Categories for a Given a
Given a natural number a, it is of interest to count various distinct numerical categories derived
from the differences of two quadratic series. Specifically, we can consider the cumulative number of
primes (P), non-prime odds (O), square-tiled compound rectangles (T), and non-tiled compounds
(R), excluding duplicates.

• Prime Numbers (P): count of prime numbers appearing in the sequence.
• Non-Prime Odd Numbers (O): count of distinct non-prime odd numbers, including odd

composite numbers and odd perfect squares.
• Square-Tiled Compound Rectangles (T): count of numbers that can be represented as a

rectangular grid fully filled with squares of varying sizes.
• Non-Tiled Compound Numbers (R): count of numbers that cannot be represented as fully

square-tiled rectangles.
Ensures that each unique number is only counted once in each category, providing clarity in the
distribution and prevalence of each category within the sequence. The code difference of two
squares.ipynb delivers the following histograms.

3.4.4 Oblong Numbers
Oblong numbers (or pronic numbers) are a subset of the rectangular numbers being of the form
n(n+ 1). As such they are the product of two consecutive integers and thus apart from square
numbers have the maximal perimeter to area ratio of all numbers. We have that the cumulative sum
of the even numbers is an oblong number

n = 2 : 2+4 = (2+1)2 − (2+1) = 32 −3 = 9−3 = 6 = 2×3

n = 3 : 2+4+6 = (3+1)2 − (3+1) = 42 −4 = 16−4 = 12 = 3×4

n = 4 : 2+4+6+8 = (4+1)2 − (4+1) = 52 −5 = 25−5 = 20 = 4×5,

6bins is not a dummy variable, but rather an optional parameter with a default value which when called as
plot_stacked_histogram(residues), is automatically assigns the value of 10 to the bins parameter inside the
function.

7Therefore, the absence of an argument for a parameter with a default value does not cause an error. Instead, Python
uses the default value, allowing the function to operate as if the value were passed explicitly by the caller.

https://colab.research.google.com/drive/1fAkPVwH8beqCNN9oAWOa9taKKxhiHklU?usp=sharing
https://colab.research.google.com/drive/1fAkPVwH8beqCNN9oAWOa9taKKxhiHklU?usp=sharing

68 Chapter 3. Composite Numbers

and generally this is because,

2+4+6+ . . .+2n = 2(1+2+3+ . . .+n)

= 2
(

n(n+1)
2

)
= n(n+1).

We can see this using the formula for the sum of an arithmetic series
(n

2(2a+(n−1)d)
)

where
a = 2 and d = 2:

S(n) =
n
2
(2a+(n−1)d)

S(2) =
n
2
(2∗2+(n−1)2) =

n
2
(4+2n−2) =

n
2
(2n+2) = n(n+1)

Consider now the odd numbers series: 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29 and note how
we can express the cubic numbers as the sum of consecutive odd numbers:

13 = 1

23 = (3+5)

33 = (7+9+11)

43 = (13+15+17+19)
...

The series of the position p to start the series p(n) = 1,3,7,13,21, . . . where 21 = (5×4)+1 and
it is in the form of a quadratic sequence n(n−1)+1.

n p(n) ∆pn ∆2 pn

1 1

2 3 2

3 7 4 2

4 13 6 2

5 21 8 2

Where,

p(n) = n(n−1)+1

∆pn = n+1

∆
2 pn = 2

We note that if two oblong numbers are neighbors, their product will also be oblong. To see
why let the two neighboring oblong numbers be n(n+1)and (n+1)(n+2) and their product is:

n(n+1)× (n+1)(n+2) = n(n+2)× (n+1)2

Now, (n+1)2 is a square number, and multiplying a square by an oblong number makes it oblong.
Therefore, the product of neighboring oblong numbers will always be oblong. For other cases, let’s
consider two non consecutive oblong numbers: a(a+1) and b(b+1) whose product is:

a(a+1)×b(b+1) = ab(a+1)(b+1)

For this to be oblong, ab and (a+ 1)(b+ 1) should differ by 1 (or in some configurations, one
should be the square of the other). By way of example, we have that the oblong multiple 2×210:

(1×2)× (14×15)≡ 2×210 = 420 = 20×21

that is itself an oblong number as a rearrangement of their prime factors reveals:

1×2×14×15 = (1×2×7)× (3×5) = 14×15

3.4 Fermat’s Little Theorem 69

To generalize and find more such examples requires careful factorization or brute-forcing for
smaller number ranges to explore such products. We shall use python to do the latter. The table
below presents the first few such products.

Multiplication Result Oblong

(1×2)× (2×3) 12 3×4

(1×2)× (14×15) 420 20×21

(1×2)× (84×85) 14280 119×120

(2×3)× (3×4) 72 8×9

(2×3)× (14×15) 1260 35×36

(2×3)× (34×35) 7140 84×85

(3×4)× (4×5) 240 15×16

(3×4)× (34×35) 14280 119×120

(3×4)× (62×63) 46872 216×217

Table 3.6: Oblong Multiplications and Results

The Python script below comprises several components:
• is_oblong(n): function that checks if a given number n is oblong or not.
• find_oblong_products(limit): function that computes products of oblong numbers up to a

given limit and returns a list of pairs that when multiplied produce another oblong number.
• After obtaining the pairs, the script then prints them in a specific format.

def is_oblong(n):
i = 1
while i * (i + 1) < n:

i += 1
return i * (i + 1) == n

def find_oblong_products(limit):
oblongs = [i * (i + 1) for i in range(1, limit + 1)]
results = []
for i in range(len(oblongs)):

for j in range(i, len(oblongs)):
product = oblongs[i] * oblongs[j]
if is_oblong(product):

k = 1
while k * (k+1) < product:

k += 1
results.append(((i + 1, i + 2), (j + 1, j + 2), (k, k+1)))

return results
pairs = find_oblong_products(1000)

The latter part of the script uses the matplotlib library to visualize the results, both as a 3D
scatter plot and as a bubble chart. The output is the following 3-d graph and bubble chart based on
the (l,m,n) co-ordinates representing the l(l +1)∗m(m+1) = n(n+1 We have coloured the dots

https://colab.research.google.com/drive/1l2nAnXM73N2D9EbyCqrIkZ6UBBtmt5Z5?usp=sharing

70 Chapter 3. Composite Numbers

Figure 3.14: Products of Oblong numbers as z-co-ordinates or sized bubbles

representing the product of consecutive oblong numbers as blue while red if otherwise. As such
it appears that apart from some initial lower order exceptions only consecutive oblong numbers
deliver themselves another oblong number. The reader is invited to investigate further with the
code. The charting is performed in the following part of the code:

l_values = [p1[0] for p1, _, _ in pairs]
m_values = [p2[0] for _, p2, _ in pairs]
n_values = [p3[0] for _, _, p3 in pairs]
colors = [’blue’ if (abs(l - m) == 1 or abs(m - n) == 1)
else ’red’ for l, m, n in zip(l_values, m_values, n_values)]
fig = plt.figure()
ax = fig.add_subplot(111, projection=’3d’)
ax.scatter(l_values, m_values, n_values, c=colors,
marker=’o’, s=4) # s=7 sets the point size
ax.set_xlabel(’L Value’)
ax.set_ylabel(’M Value’)
ax.set_zlabel(’N Value’)
plt.show()
largest_n = max(n_values)
bubble_sizes = [50 * (n/largest_n) for n in n_values]
plt.scatter(l_values, m_values, s=bubble_sizes, c=colors, alpha=0.5)

1. Extraction of Values:
• l_values: This list comprehension extracts the first value of every tuple in pairs list.
• m_values: extracts the first value of the second tuple for every entry in pairs.
• n_values: extracts the first value of the third tuple from each entry in pairs.

2. Determine colors based on consecutive oblongs: A list comprehension is used to determine
the color of each point. If either of the oblong numbers is consecutive (i.e., their difference is
1), then the color is set to blue; otherwise, it is set to red.

3. 3D Plot:
• A new figure is initialized with plt.figure() and 3D subplot is added with add_subplot.
• scatter method plots the 3D points whose size is set with parameter s=4.
• Labels are set for each of the x, y, and z-axes and the plot is displayed using plt.show().

4. Bubble Chart:

https://colab.research.google.com/drive/1l2nAnXM73N2D9EbyCqrIkZ6UBBtmt5Z5?usp=sharing

3.4 Fermat’s Little Theorem 71

• The largest value in n_values is determined.
• Bubble sizes are computed based on the ratio of each value in n_values to the largest

value, scaled by a factor of 50.
• The scatter method plots the bubble chart with sizes determined by the previously

computed bubble sizes.

72 Chapter 3. Composite Numbers

3.4.5 Cumulative sum chart of Oblong Numbers
The sum of the reciprocals of the first n oblong numbers is:

n

∑
k=1

1
k(k+1)

We can split each fraction using partial fraction decomposition:

1
k(k+1)

=
1
k
− 1

k+1

Using this identity, we can expand and then collapse our sum:

n

∑
k=1

(
1
k
− 1

k+1

)
=

(
1− 1

2

)
+

(
1
2
− 1

3

)
+

(
1
3
− 1

4

)
+ · · ·+

(
1
n
− 1

n+1

)
as it is a telescoping series, where you can see that after the 1, the negative fraction in each term
will cancel out the positive fraction in the next term so that we are left with:

n

∑
k=1

1
k(k+1)

= 1− 1
n+1

=
n+1
n+1

− 1
n+1

=
n

n+1

That the cumulative partial sums of reciprocals of the oblong numbers to 1 as n tend to infinity can
be coded and displayed as in Fig.8.8 as a set of stacked chart versus oblong number, n:

Figure 3.15: Partial sums of first 100 Oblong numbers.

https://colab.research.google.com/drive/1rAiz7nnFVvx3UGsoWiYVwmjrZQQC4TNK?usp=sharing

3.4 Fermat’s Little Theorem 73

The essential snippet from stackedOblongReciprocals.ipynb follows.

def stacked_bar_chart(n, scale=’linear’):
oblong_numbers = generate_oblong_numbers(n)
reciprocals = [1/num for num in oblong_numbers]
cumsums = np.cumsum(reciprocals)
fig, ax = plt.subplots(figsize=(12, 8))
for i in range(n):

if i == 0:
ax.bar(i + 1, reciprocals[i])

else:
ax.bar(i + 1, reciprocals[i], bottom=cumsums[i-1])

if scale == ’log’:
ax.set_xscale(’log’)

plt.xticks(rotation=45)
plt.tight_layout()
plt.show()

stacked_bar_chart provides a choice of scale and readability of axis ticks for large values of n:
• generate_oblong_numbers(n) is called to generate the first n oblong numbers.
• a list comprehension calculates the reciprocals of these oblong numbers.
• np.cumsum is used to find the cumulative sums of the reciprocals.
• A matplotlib figure and axis are created with plt.subplots, specifying a figure size.
• A for loop iterates over the range n:

– For the first index i = 0, ax.bar is called with the height of the reciprocal.
– For subsequent indices, ax.bar is called with the additional bottom parameter set to

the previous cumulative sum.
• The x-axis is optionally set to a logarithmic scale with ax.set_xscale(’log’).
• Axis labels are rotated 45 degrees for clarity with plt.xticks(rotation=45).

https://colab.research.google.com/drive/1rAiz7nnFVvx3UGsoWiYVwmjrZQQC4TNK?usp=sharing

74 Chapter 3. Composite Numbers

3.5 Tiled Rectangles and Electrical Circuits

Formation of the System of Equations

[11] asks us to consider an electrical circuit derived from the square tiling of a rectangle, with
resistors of 1 ohm each. The circuit is driven by a potential difference and can be represented by
the following system of equations, based on Kirchhoff’s laws and Ohm’s law:

1. The current entering the source node is equal to the sum of currents leaving it. For Node 1,
this is expressed as:

XI1 = 8 = I(1,0)+ I(1,2)+ I(1,3) = (V1 −V0)+(V1 −V2)+(V1 −V3) (3.7)

2. The sum of currents entering a node is equal to the sum of currents leaving it. For Node 0,
this is expressed as:

I(1,0)+ I(2,1) = I0 = 8 (3.8)

3. The voltage differences around a closed loop sum to zero. For the loop involving Nodes 1, 2,
and 3, this is expressed as:

(V1 −V2)+(V3 −V2) = (V2 −V0) (3.9)

By rearranging and aligning the coefficients of V1, V2, and V3 from the above equations, we can
form the matrix A as follows: From Equation (3.7):

8 = 3V1 −V2 −V3

From Equation (3.8):

8 =V1 +V2

From Equation (3.9):

0 =V1 −4V2 +V3

Thus, the matrix A coefficients of the system of three linear equations and the vector b are formed
as:

A =

3 −1 −1

1 1 0

1 −3 1

 , b =

8

8

0

Solving the system AV = b provides the voltages V1, V2, and V3 at each node in the circuit. From
the electrical circuit can be conceptualized the square tiling of a rectangle, specifically a 40 =
5x8 rectangle. Modelled as a weighted graph with resistors, each of 1 ohm, driven by a potential
difference V the circuit has a current I = 8A and a full potential difference of V1 = 5V . The number
of resistors corresponds to the number of squares in the filled rectangle. Using Kirchhoff’s law
of conservation of charge, which states that the flow of current into a node is equal to the current
flowing out, and Ohm’s law (V = IR) with all resistors being 1 ohm, the voltage differences between
nodes are the same as the currents flowing between nodes.

3.5 Tiled Rectangles and Electrical Circuits 75

Figure 3.16: Electrical Circuit and Graph of square tiled 40.

The circuit is constructed with nodes and edges representing the connections between them,
such as edges (0,1), (0,2), (2,3), etc. The solution of the system AV = b provides the voltages at
each node, given the initial conditions and the arrangement of the circuit.

The circuitGraphrectangleFill.ipynb creates the circuit diagram and graphs tha t map to the
filling of the fibonacci rectangle

3.5.1 filling rectangles by divisor squares

42 = 3×14

= 32 +3×11

= 32 +3× (3+8)

= 32 +32 +3×8

= 2 ·32 +3× (3+5)

= 3 ·32 +3×5

= 3 ·32 +3× (3+2)

= 4 ·32 +(2+1)×2

= 4 ·32 +22 +2 ·12

66 = 3×22

= 32 +3×19

= 32 +3× (3×6+1)

= 32 +32 ×6+3×1

= 32 +6×32 +3

= 7×32 +3×12

But finding those tilings by squares that tile the rectangle completely is not so easy. Consider the
(incomplete) set of possible square dessication of 30:

https://colab.research.google.com/drive/1tCoOsGAuQQIQUsW57WNQ7cnUoVlxb5ks?usp=sharing

76 Chapter 3. Composite Numbers

30 = 1 ·22 +1 ·12 +1 ·52

= 1 ·22 +26 ·12

= 3 ·12 +3 ·32

= 12 ·12 +2 ·32

= 21 ·12 +1 ·32

= 30 ·12

= 5 ·12 +1 ·52

We can see that the following code dissectingRectangles.ipynb does not pick the last possible sum
as the fully tiled rectangle:

Figure 3.17: Badly dessicated tiled rectangle of 30.

In order to systematically fill the rectangle we need a way of systematically ordering the squares
and aborting dead ends and this is achived in backtrackFill.ipynb

Rationale Behind the Ordered Set U in the Tile Filling Algorithm
The tile filling algorithm for a rectangle, such as one with dimensions 399 = 19x21, involves a
systematic approach to arranging squares within the rectangle. The ordered set U plays a crucial
role in this process. The rationale behind U can be explained as follows:

1. Defining the Coordinate System: In the context of the algorithm, each square is identified
by its lower-left corner coordinates (X ,Y) and its size. The ordered set U is used to define a
systematic approach to how these squares are considered for placement within the rectangle.

2. Ordering of Points: In U , a point (X ,Y) precedes another point (X ′,Y ′) if either:
• The sum of the coordinates of (X ,Y) is less than that of (X ′,Y ′), i.e., X +Y < X ′+Y ′.

This implies prioritizing points closer to the origin of the coordinate system.
• If X +Y = X ′+Y ′, then the point with the lower Y value is given precedence, i.e.,

Y < Y ′. This rule further orders points that are equidistant from the origin.
3. Ordering of Squares: A square [(X ,Y),L] precedes another square [(X ′,Y ′),L′] in the set U

if either:
• The point (X ,Y) precedes (X ′,Y ′) in the set of points. This ensures that squares are

https://colab.research.google.com/drive/1pLJHw1twpMrxwSPEOyqtS2aM6LVkp9l2?usp=sharing
https://colab.research.google.com/drive/1BYToIQvA9d1ASfNlw7sUCUc2SRk9G1x6?usp=sharing

3.5 Tiled Rectangles and Electrical Circuits 77

considered in an order that starts from the bottom left of the rectangle and progresses
upwards and rightwards.

• If (X ,Y) = (X ′,Y ′), then the square with the smaller size L is given precedence. This
ensures that, for the same starting point, smaller squares are considered first, allowing
for a more granular and flexible filling of the space.

4. Backtracking Implementation: In the context of the backtracking algorithm, this ordered
set U is essential for systematically exploring potential square placements. The algorithm
starts with larger squares and tries to place them in the earliest position available according to
the order defined in U . If the placement leads to a dead end where no further squares can be
placed, the algorithm backtracks, removes the last placed square, and tries the next possible
square in the ordered set.

5. Efficiency and Coverage: This ordered approach ensures that the algorithm efficiently
covers the rectangle space. By starting from the bottom left and moving upwards and
rightwards, and by considering smaller squares for the same starting point, the algorithm can
adaptively fill in smaller gaps that larger squares might leave behind.

6. Goal of the Algorithm: The ultimate aim is to fill the entire rectangle with squares of
varying sizes without overlapping and ensuring all spaces are covered. The ordered set
U is instrumental in achieving this by providing a structured way to consider all potential
placements of squares.

The following function is an example of a backtracking algorithm, systematically exploring all
possible placements of squares and retreating when a dead-end is reached. It is performed in
backtrackFill.ipynb

def find_solution(board, squares, result, start_row=0, start_col=0):
for row in range(start_row, len(board)):

for col in range(start_col if row == start_row else 0, len(board[0])):
if not board[row][col]:

for size in squares:
if is_valid_placement(board, row, col, size):

place_square(board, row, col, size, True)
result.append(((col, len(board) - row - size), size))
if find_solution(board, squares, result, row, col):

return True
Backtrack
place_square(board, row, col, size, False)
result.pop()

return False # No valid square placement found for this cell
return True # All cells are filled

Description of the find_solution Function
The find_solution function is a recursive backtracking algorithm designed to fill a rectangular
grid with squares of varying sizes. The function’s mechanism can be described as follows:

1. The function iterates over each cell in the grid, starting from the specified start_row and
start_col. It searches for the first empty cell in the grid.

2. For each empty cell found, the function tries to place a square of each possible size, starting
from the largest. The placement of a square is deemed valid if it fits within the grid boundaries
and does not overlap with previously placed squares.

3. If a square can be placed, the function:
• Marks the cells covered by the square as filled.

https://colab.research.google.com/drive/1BYToIQvA9d1ASfNlw7sUCUc2SRk9G1x6?usp=sharing

78 Chapter 3. Composite Numbers

• Adds the square’s position and size to the result list. The position is adjusted to
ensure correct Y-coordinate representation.

• Recursively calls itself to attempt filling the remaining part of the grid.
4. If the recursive call successfully fills the grid, the function returns True, indicating a success-

ful tiling.
5. If placing a square of any size at the current cell does not lead to a solution, the function

backtracks:
• The last placed square is removed, and its cells are marked as empty again.
• The function returns False, triggering further backtracking in previous recursive calls.

6. The process continues until all cells are filled or no valid placement is found for the initial
cells, in which case the function returns False, indicating no solution.

3.6 Number Classification 79

3.6 Number Classification

Numbers are often studied for their divisibility properties, specifically the count and nature of their
divisors. We are in need of some further standard clarifying definitions.

1. Perfect Numbers: A number is perfect if the sum of its proper divisors (excluding itself)
equals the number itself. Example: 28 (divisors: 1, 2, 4, 7, 14; sum = 28)

2. Semi-Perfect Numbers: A number is semi-perfect if it is the sum of some of its proper
divisors. Example: 12 (divisors: 1, 2, 3, 4, 6; sum of 1, 2, 3, 6 = 12)

3. Abundant Numbers: A number is abundant if the sum of its proper divisors exceeds the
number itself. Example: 12 (divisors: 1, 2, 3, 4, 6; sum = 16)

4. Deficient Numbers: A number is deficient if the sum of its proper divisors is less than the
number itself. Example: 8 (divisors: 1, 2, 4; sum = 7)

5. Weird Numbers: A number is weird if it is abundant but not the sum of any combination
of its proper divisors. Example: 70 (divisors: 1, 2, 5, 7, 10, 14, 35; sum = 74, but no subset
sums to 70)

The headers in table of these properties for the first 20 integers have the following meaning:

1. Number n: The integer in consideration.
2. Prime factors of n: The prime numbers that divide n.
3. Average of all divisors, P(n): The mean of all divisors of n.
4. P

A where A = m×n: m is the number of divisor pairs of n.
5. Sum of proper divisors, Sk: The sum of all divisors of n excluding n itself.
6. Classification based on Sk: Categorization into deficient, semi-perfect-perfect, semi-perfect

abundant, or weird based on the sum of proper divisors.

80 Chapter 3. Composite Numbers

n Prime Factors P(n) P/A Sk Classification

1 [] 1.00 N/A 0 deficient

2 [2] 1.50 0.75 1 deficient

3 [3] 2.00 0.67 1 deficient

4 [2, 2] 2.33 0.58 3 deficient

5 [5] 3.00 0.60 1 deficient

6 [2, 3] 3.00 0.25 6 semi-perfect-perfect

7 [7] 4.00 0.57 1 deficient

8 [2, 2, 2] 3.75 0.23 7 deficient

9 [3, 3] 4.33 0.48 4 deficient

10 [2, 5] 4.50 0.23 8 deficient

11 [11] 6.00 0.55 1 deficient

12 [2, 2, 3] 4.67 0.13 16 semi-perfect abundant

13 [13] 7.00 0.54 1 deficient

14 [2, 7] 6.00 0.21 10 deficient

15 [3, 5] 6.00 0.20 9 deficient

16 [2, 2, 2, 2] 6.20 0.19 15 deficient

17 [17] 9.00 0.53 1 deficient

18 [2, 3, 3] 6.50 0.12 21 semi-perfect abundant

19 [19] 10.00 0.53 1 deficient

20 [2, 2, 5] 7.00 0.12 22 semi-perfect abundant

Table 3.7: 1-20 classified according to sums and product of the proper divisors

3.6 Number Classification 81

Below are a few numbers that lead up to the weird one that is 70 as coded in UlamNumberClas-
sify.ipynb

n Prime Factors P(n) P/A Sk Classification

60 [2, 2, 3, 5] 14.00 0.04 108 semi-perfect abundant

61 [61] 31.00 0.51 1 deficient

62 [2, 31] 24.00 0.19 34 deficient

63 [3, 3, 7] 17.33 0.09 41 deficient

64 [2, 2, 2, 2, 2, 2] 18.14 0.09 63 deficient

65 [5, 13] 21.00 0.16 19 deficient

66 [2, 3, 11] 18.00 0.07 78 semi-perfect abundant

67 [67] 34.00 0.51 1 deficient

68 [2, 2, 17] 21.00 0.10 58 deficient

69 [3, 23] 24.00 0.17 27 deficient

70 [2, 5, 7] 18.00 0.06 74 weird (70)

Table 3.8: 60-70 classified according to sums and product of the proper divisors

An abundant number is defined as a number for which the sum of its proper divisors (excluding
itself) is greater than the number itself. For a number to be abundant, its divisors must sum to
a value larger than the number. This typically requires the number to have multiple small prime
factors, leading to a sufficiently large number of divisors as borne out by this coding of the following
histogram.

https://colab.research.google.com/drive/1Y_5g6sllek4cnOFgqnEExaYUUZdRva5s?usp=sharing
https://colab.research.google.com/drive/1Y_5g6sllek4cnOFgqnEExaYUUZdRva5s?usp=sharing
https://colab.research.google.com/drive/15RL2LeqdIT62K1WL6Eg6r_WLa0L_cCtP?usp=sharing

82 Chapter 3. Composite Numbers

Figure 3.18: Histogram of Deficiency vs Abundant frequencies by Perimeter/Area ratio.

knapsackSemiPerfection.ipynb delivers a list of semi-perfect numbers.

https://colab.research.google.com/drive/1CaYjvF_zIMyxCHtBy0Gij0IJ9xXsblTM?usp=sharing

3.6 Number Classification 83

3.6.1 Ranking Metrics
Rank correlation coefficients, proffer a robust comprehension of relationships in ordinal or non-
linear data summarising inter-relationships. listingNumber Classification.ipynb delivers the follow-
ing plot:

Figure 3.19: Histogram of Deficiency vs Abundant frequencies by Perimeter/Area ratio.

and it also presents the rank correlation coefficients:

from scipy.stats import linregress, spearmanr, kendalltau
spearman_coef, _ = spearmanr(prime_count_values, PA_values)
kendall_coef, _ = kendalltau(prime_count_values, PA_values)
print(f"Spearman’s rho (P/A vs Count of Prime Factors): {spearman_coef:.3f}")
print(f"Kendall’s tau (P/A vs Count of Prime Factors): {kendall_coef:.3f}")

• Spearman’s ρ (P/A vs Count of Prime Factors): -0.939
• Kendall’s τ (P/A vs Count of Prime Factors): -0.826
• Spearman’s ρ (Log(P/A) vs Log(Sk)): -0.836
• Kendall’s τ (Log(P/A) vs Log(Sk)): -0.659
These rank correlation coefficients reveal strong inverse relationships between the variables

under consideration. Specifically:
• Spearman’s ρ and Kendall’s τ between the P/A ratio and the count of prime factors (ρ =
−0.939, τ =−0.826) indicate a very strong negative correlation, implying that a higher P/A
ratio is consistently associated with a lower count of prime factors.

• For the log-transformed variables, Spearman’s ρ = −0.836 and Kendall’s τ = −0.659
also suggest a strong inverse relationship, albeit slightly weaker than the non-transformed
counterparts.

These correlations underscore the link between the P/A ratio and prime factors’ distribution, a
cornerstone in number theory. The strong negative correlations suggest that the P/A ratio could serve
as a predictive marker for the density of prime factors, offering insights into the structural properties
of numbers. Particularly, the robustness of these correlations, even under log transformation,
highlights the non-linear dynamics that govern prime distribution and its relationship to other
number theoretic properties.

https://colab.research.google.com/drive/14AtX7AWnlfAwssVoqegJUUM_PLfAHAvH?usp=sharing

84 Chapter 3. Composite Numbers

Definition 7 Rank correlation coefficients , such as Kendall’s τ and Spearman’s ρ , provide
non-parametric measures to gauge the strength and direction of association between two ranked
variables and are especially apt in scenarios where one seeks to fathom the ordinal relationship
between two data sets.

Unveiling Relationships: When juxtaposing two disparate metrics like the P/A ratio
versus the number of primes, rank correlations can underline if the ordinality in one metric
echoes the ranking in its counterpart bringing to light non-linear relationships that might
otherwise be overlooked.

•• Gaining Data Insights: The beauty of rank correlations lies in their ability to provide in-
sights even when metrics operate on disparate scales or dimensions. A salient Spearman’s
ρ between the P/A ratio and the number of primes could insinuate that numbers with a
pronounced P/A ratio usually possess a higher number of prime factors.

• Probing Deeper into Number Properties: A significant rank correlation between two
ostensibly unrelated number attributes, say the sum of proper factors and the P/A ratio,
could hint at structural ties.

Magic Numbers in Atomic theory
Nucleons (protons and neutrons) in atomic nuclei fill in successive shells with the following
numbers:

Nucleon shells: 2,6,12,8,22,32,44, . . .

Cumulatively, the magic numbers representing total nucleons for completely filled sets of shells
are:

Magic numbers: 2,8,20,28,50,82,126, . . .

Isotopes with both proton and neutron counts that match the magic numbers, known as doubly
magic isotopes, exhibit enhanced stability are:

• 4He: 2 protons, 2 neutrons
• 16O: 8 protons, 8 neutrons
• 40Ca: 20 protons, 20 neutrons
• 48Ca: 20 protons, 28 neutrons
• 56Ni: 28 protons, 28 neutrons
• 132Sn: 50 protons, 82 neutrons
• 208Pb: 82 protons, 126 neutrons.

Electrons in atoms, on the other hand8, fill in shells around the nucleus following:

Electron shells: 2,8,18,32, . . .

We can see the appeal to their magic when reflecting that the stability shells are related to the
Perfect numbers:

6 = 1+2+3

28 = 1+2+4+7+14

as well as less remarkably 12 = 22×3, 18 = 2×32 and 20 = 22×5 the first three square numbers.
8Both nucleon and electron shell models show an increasing number of "seats" as we move to higher shells. However,

the patterns differ due to the distinct nature of the forces and the particles involved. Electrons fill based on the
electromagnetic force and obey the Pauli exclusion principle in a spatial context with spin. Nucleons, on the other hand,
interact through the strong nuclear force, which is much stronger and shorter-ranged than the electromagnetic force.

While the shell model concept can be applied to both, the details and the resulting magic/fill numbers are different
between the atomic electron configurations and nuclear configurations.

3.7 Semi-Perfect Numbers and the Knapsack Problem 85

3.7 Semi-Perfect Numbers and the Knapsack Problem
A number’s divisors, especially its proper divisors, can lead to various combinations that sum up to
the number itself, a principle foundational to problems like the Knapsack problem9 which is one
of the most studied problems in Combinatorial optimization. The Knapsack Problem asks, given
a set of items, each with a weight and a value, determine the number of each item to include in
a collection so that the total weight is less than or equal to a given limit, and the total value is as
large as possible. Formally, for a set of items i = 1, . . . ,n, each with value vi and weight wi, and
a maximum weight capacity W , the goal is to maximize ∑

n
i=1 vixi, subject to ∑

n
i=1 wixi ≤ W and

xi ∈ {0,1}. The Knapsack Problem finds relevance in numerous modern contexts, including:
• Resource Allocation: In industries, where resources must be optimally allocated within

budgetary constraints.
• Data Compression: In computer science, especially in methods involving lossless data

compression in which the encoding of data allows for the original data to be perfectly
reconstructed from the compressed data despite the elimination of redundancy in data.

• Financial Portfolio Optimization: In finance, for optimizing the selection of investments
under a budget constraint.

• Cryptographic Algorithms: Some cryptographic algorithms use knapsack-type problems
as a basis for public key cryptography.

• Logistics and Supply Chain Management: For maximizing the value of goods transported
or stored within capacity limits.

Specifically, given a set of items, each with a weight and a value, the objective is to determine the
number of each item to include in a knapsack so that the total weight does not exceed a given limit
while maximizing the total value.

Efficient algorithms for partitioning variants of the Knapsack Problem find applications in many
discrete optimization contexts. The problem can be described as follows, Let:

• n be the number of items.
• wi be the weight of the ith item.
• vi be the value of the ith item.
• W be the maximum weight the knapsack can hold.
Objective: max∑

n
i=1 xivi

Subject to: ∑
n
i=1 xiwi ≤W xi ∈ {0,1} for all1 ≤ i ≤ n

Where xi is a variable which is 1 if the ith item is included in the knapsack and 0 otherwise.
Imagine then a knapsack with a weight capacity of 60 units. You’re given a set of weights (or
items) corresponding to the proper divisors of 60: {1,2,3,4,5,6,10,12,15,20,30} Your challenge
is to pick some of these items so that they sum up exactly to 60, the weight capacity of the
knapsack. From the divisors of the semi-perfect 60, there is more than one way to fill the knapsack
to completely fill the knapsack without exceeding its weight limit, for example:

2+4+12+18+24 = 60

1+2+3+6+12+36 = 60

9In computer science, the knapsack problem is considered NP-hard, meaning it can get computationally intensive as
the number of items (or divisors) increases. The fact that a number like 60 offers a multiplicity, m = 34 of solutions to
the knapsack problem is a testament to the richness of this computational challenge.

86 Chapter 3. Composite Numbers

Figure 3.20 presents the 34 ways you can pack such a rucksack as coded in stackingSemi-
PerfectionsOfAbundants.ipynb and the code for this chart follows.

Figure 3.20: Knapsack combinations comprising weights that are the proper factors of 60

def stacked_chart_for_abundant(a):
combinations = semi_perfect_combinations(a)

Set up the figure and axis
fig, ax = plt.subplots(figsize=(10, len(combinations) * 0.5))

We only need to label the number once, so we use this flag
first_bar = True
y_pos = range(len(combinations))

For each combination, create a stacked bar
for idx, combo in enumerate(combinations):

left = 0
for segment in combo:

ax.barh(idx, segment, left=left, label=f’{segment}’ if first_bar else "")
left += segment

first_bar = False

https://colab.research.google.com/drive/1KOJzCVh7_EPlGzyMeDvmPbNd4bWZt2Am?usp=sharing
https://colab.research.google.com/drive/1KOJzCVh7_EPlGzyMeDvmPbNd4bWZt2Am?usp=sharing

4. CuboidNumbers

“Mathematics is the art of giving the same name to different things.’
— Henri Poincaré[Heisenberg]

The function is_square(n) that checks if a given positive integer n is a perfect square or not.

def is_square(n):
Returns True if n is a perfect square, otherwise False
return int(math.sqrt(n))**2 == n

The Python function called is_non_square(n) determine whether a given positive integer n is a
"non-square" number or not.

def is_non_square(n):
if is_square(n):

return False
else:

for i in range(2, int(math.sqrt(n))+1):
if n % i == 0:

if is_square(i) or is_square(n // i):
return False

return True

A non-square number is a positive integer that is not a perfect square, meaning it cannot be expressed
as the square of another integer. For example, 2, 3, 5, 6, 7, 8, 10, and so on are non-square numbers.

Here’s how the code works:
1. The function takes a positive integer n as its input.
2. It first checks whether n is a perfect square using a function called is_square(n). If n is

found to be a perfect square, the function returns False, indicating that it is not a non-square
number.

3. If n is not a perfect square, the code enters a loop that iterates through integers starting from
2 up to the square root of n.

88 Chapter 4. CuboidNumbers

4. For each integer i within this range, it checks if n is divisible by i. If it is divisible, it further
checks whether either i or n//i (the integer division result) is a perfect square using the
is_square(n) function.

5. If either i or n//i is found to be a perfect square, the function returns False, indicating that
n is not a non-square number.

6. If none of the conditions for being a perfect square are met during the loop, the function
returns True, indicating that n is indeed a non-square number.

7. the import statement for the math module, which provides the sqrt function used in the
code.

We will say that a cuboid number is any composite number that has a prime factor decomposition
that is the same as its radical and in which at maximum has three distinct prime factor divisors.

def radical(n):
factors = set(prime_factors(n))
return math.prod(factors)

def is_rich_composite(n):
factors = prime_factors(n)
return len(set(factors)) < len(factors)

Here is the code to determine the surface Area, volume and squared diagonal of a cuboid
number:

def surface_area(p, q, r):
return 2 * ((p - 1) * (q - 1) + (p - 1) * (r - 1) + (q - 1) * (r - 1))

def volume(p, q, r):
return (p - 1) * (q - 1) * (r - 1)

def diagonal_square(p, q, r):
return (p - 1)**2 + (q - 1)**2 + (r - 1)**2

5. Prime Numbers

“The beauty of that is that amongst all the possible forms of understanding, the one form practiced in
mathematics is singled out as “true” understanding. Only the employment of a precise, logically consistent

language, [the only] language so far capable of formalisation of proofs , can it become possible to lead to
true understanding.”

— Heisenberg in The Debate between Plato and Democritus[Heisenberg]

We start with some definitions:

In order to investigate the various subsets of the integers, that may be of mixed compos-
ite and prime form, including the set of polygon, r-gon numbers lets formalize our language a
little.

Definition 8 Modular arithmetic is clock arithmetic in which you only care about the remainder
when dividing numbers. For example, if you have 17 apples and you want to divide them into
groups of 5, you’d get 3 groups of 5 apples, and there would be 2 apples left over. So, in modular
arithmetic, we only care about the 2 apples left over, not the 3 groups of 5. Prime integers in
Python are generated using the modular arithmetic symbol, %

Definition 9 Modulus (m), in modular arithmetic, is like the size of the clock. It tells you where
the clock hand wraps around and starts again. For example, in a 12-hour clock, the modulus
m = 12. For instance, within Python we write 17%5=2, for modulus 5.

Definition 10 Dividend (d), is the number you want to divide. In our example above, the
dividend, d is 17.

Definition 11 Remainder (r) , in modular arithmetic is is the result of the division. It’s the
leftover part that we care about. In 17%5, the remainder is 2.

90 Chapter 5. Prime Numbers

Table 5.1: Extracted columns from the given table

n prime factorisation proper factors

1 {1}

2 2 {1, 2}

3 3 {1, 3}

4 2×2 {1, 2, 4}

5 5 {1, 5}

6 2×3 {1, 2, 3, 6}

7 7 {1, 7}

8 2×2×2 {1, 2, 4, 8}

9 3×3 {1, 3, 9}

10 2×5 {1, 2, 5, 10}

11 11 {1, 11}

12 2×2×3 {1, 2, 3, 4, 6, 12}

27 3×3×3 {1, 3, 9, 27}

28 2×2×7 {1, 2, 4, 7, 14, 28}

29 29 {1, 29}

30 2×3×5 {1, 2, 3, 5, 6, 10, 15, 30}

31 31 {1, 31}

32 2×2×2×2×2 {1, 2, 4, 8, 16, 32}

Back to our rectangular n-ply diagram 3.1, and you may be drawn to the "observation" that in
representing consecutive integers as blue-red, the prime numbers, except 2 appear as all blue. Let
us expand our range(1, 31) from 30 to 100:

5.1 Partitioning the primes 91

Figure 5.1: Primes and Composites.

That the odd primes remain blue is a result of there being an odd number of intervening composites
between consecutive primes and we are led to the natural conjecture:

Theorem 5.0.1 — Prime frequency. is such that there is always an odd number of composites
between consecutive primes.

This prompts us to increase the span of numbers over which we code for. Tweak the code to drop
labelling the primes, re-sizing the figure, and reducing size of marker:

plt.figure(figsize=(15, 3))
..
plt.plot(spacing_x, _ * 2, marker=’o’, markersize=1, color=color)

We know that the prime numbers are all odd except 2 so there must always be an odd number of
composites between the primes. Indeed we will see that all primes can be generated by either of the
pair of generators 6n±1 and 6n±3 or 4n+1 and 4n+3. We merely ask ourselves at this juncture
whether either something further interesting is being revealed here or something rather obvious is
being overlooked. That is in the spirit of a:

• mathematician, look for a reasoned proof for our idle assertion;
• data analyst look for a more efficient way to present the data set;

If the reader is to be the latter I invite you to think or adapt the python code and consider the
structure of the composites that interleave the primes.

5.1 Partitioning the primes
There are plenty of ways to skin a cat we can partition the primes according to various grouping
schemes. While in themselves nothing deep is revealed such an analysis provides an excuse to
perform some nice data analysis. Accordingly various horse races can be set up to determine which
delineations holds the more prevalent set of primes in the short and long run

Fermat-4n+1 Type: If a prime number (let’s say "p") leaves a remainder of 1 when divided by 4,
it belongs to the "4n+1" type. For example, 5 is a "4n+1" prime because 5%4 = 1.

Gauss-4n+3 Type: a prime number of the "4n+3" type is, for example, 7 because 7%4 = 3.
All the primes larger than 5 can be grouped by sixes, that is by starting at 7 and 11 we can create
two arithmetic series with generators 6n+1 and 6n+5 To construct a four horse race consider the
split into four arithmetic series of form p+8k for initial primes p ∈ {7,11,13,17}.

https://colab.research.google.com/drive/13REiDWih-UWlGHPY_IwNTWq3vEFRocw-?usp=sharing

92 Chapter 5. Prime Numbers

4n+1

5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149

4n+3

3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107, 127, 131, 139, 151

Table 5.2: Categorization of primes up to 150 into 4n+1 and 4n+3 series

6n+1

7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139, 151

6n+5

5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 137, 149

Table 5.3: Categorization of primes up to 150 into 6n+1 and 6n+5 series

Series 7+8k Series 11+8k

7, 31, 71, 103, 127 11, 19, 43, 59, 67, 83, 107, 139

Series 13+8k Series 17+8k

13, 29, 37, 53, 61, 73, 97, 109, 149 17, 41, 73, 89, 97, 113, 137

Table 5.4: Categorization of primes up to 150 into 7+8k, 11+8k, 13+8k, and 17+8k series

5.1.1 Quadratic generators
In fact we need not be so linear with our thinking and consider instead the race between the number
of intersections between three quadratic generators n2 + c and the primes,

Figure 5.2: Proper Divisors in interval 1-500 with max 500 terms in sequence.

quadraticPrimeRace.ipynb uses the Sieve of Eratosthenes to generate primes

def sieve_of_eratosthenes(n):
primes = [] # Initialize a list to track prime numbers
Create a boolean array "prime[0..n]" and initialize all entries as true.
A value in prime[i] will finally be false if i is Not a prime, else true.
prime = [True for i in range(n + 1)]
p = 2 # Start with the smallest prime number
Iterate over each number p starting from 2 to sqrt(n)
while p * p <= n:

https://colab.research.google.com/drive/1T5zWOE0Uro5bDywrHuf-7kfgAH2B9D6I?usp=sharing

5.1 Partitioning the primes 93

If prime[p] is not changed, then it is a prime
if prime[p] == True:

Update all multiples of p
for i in range(p * p, n + 1, p):

prime[i] = False
p += 1

Collect all prime numbers
for p in range(2, n):

if prime[p]:
primes.append(p)

return primes
primes = sieve_of_eratosthenes(10000)

The function find_intersections is designed to identify the intersection points between a given
series of numbers and a list of prime numbers.

def find_intersections(series, primes):
return [n for n in series if n in primes]

max_n = int(np.sqrt(1000000))
series_1 = [n**2 + 1 for n in range(1, max_n)] \ldots
intersections_1 = find_intersections(series_1, primes) \ldots

Taking two argument list, series and primes:
• returning a new list that consists of numbers from series that are also found in primes

achieved through a list comprehension, which iterates over each number n in series and
includes n in the output list if n is present in primes.

The code then generates three different series of numbers (series_1, series_2, and series_3)
by applying the formula n2 + k for k = 1,2,3 respectively.

5.1.2 Mersennes Prime Horseplay
Definition 12 Mersennes Primes are prime numbers of the form 2p −1 where p is also a prime
number. These primes are named after Marin Mersenne, a French monk who studied these
numbers in the early 17th century. The Great Internet Mersenne Prime Search (GIMPS), is a
distributed computing project focused on finding these rare primes. The largest of the 51 known
Mersenne primes is 282,589,933 −1, discovered in December 2018. Here is the full list of the first
51 known Mersenne primes:

2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423,
9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839,
859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583,
25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281,
77232917, 82589933.

Now consider the split of Mersennes primes into Fermat and Gauss types. The divisibility test for 4
is straightforward: a number is divisible by 4 if its last two digits form a number that is divisible
by 4. This is because any number can be expressed as the sum of a multiple of 100 (which is a
multiple of 4) and its last two digits and the multiple of 100 doesn’t affect the remainder when
divided by 4. Accordingly we can see that 521 has remainder 1 given that 4 divides 21 remainder 1.
MersennesSplit.ipynb code does the splitting:

group_4n1 = []
group_4n3 = []
for prime in mersenne_primes:

https://colab.research.google.com/drive/1Zwj4xNaxGj7-ddD43DncU1qY1ngPhFnF?usp=sharing

94 Chapter 5. Prime Numbers

if prime % 4 == 1:
group_4n1.append(prime)

elif prime % 4 == 3:
group_4n3.append(prime)

4n+1 Mersenne Primes 4n+3 Mersenne Primes

5, 13, 17, 61, 89, 521, 2281, 3217, 3, 7, 19, 31, 107,

4253, 9689, 9941, 11213, 19937, 127, 607, 1279, 2203,

21701, 23209, 44497, 132049, 859433, 4423, 86243, 110503,

1398269, 2976221, 3021377, 6972593, 216091, 756839, 1257787,

13466917, 30402457, 32582657, 42643801, 20996011, 24036583, 25964951,

43112609, 57885161, 74207281, 77232917, 37156667

82589933

Table 5.5: Categorization of Mersenne primes into 4n+1 and 4n+3

And the Fermat primes, 4n+1 for the moment at least are winning the Mersenne race.

Mersenne Primes Categorized by Last Digit
Ends in 1:

• 521, 2281, 3217, 9941, 21701, 216091, 2976221, 20996011, 42643801, 57885161, 74207281,
Ends in 3:

• 3, 2203, 4423, 11213, 86243, 110503, 859433, 6972593, 24036583, 82589933
Ends in 7:

• 7, 107, 127, 607, 19937, 44497, 1257787, 3021377, 13466917, 30402457, 32582657,
37156667, 77232917

Ends in 9:
• 89, 1279, 9689, 23209, 132049, 756839, 1398269, 43112609

5.2 Prime Epigraphing 95

5.2 Prime Epigraphing

Epigraphy, the art of interpreting ancient inscriptions, aligns with Euclid’s claim that "The laws of
nature are but the mathematical thoughts of God." As the discipline uncovers the hidden narratives
in stone and metal, so we can look to reveal the patterns of mathematica in constructions such as
the Ulam spiral.

Figure 5.3: Ulam’s original paper on spiralling primes.

Stanislaw Ulam, known for his work in the Standard Model of physics, suggested a spiralling
arrangement of numbers to reveal hidden structures within the prime numbers. In the image below
prime numbers are written in red and their affinity to diagonals is almost a cause for pause.

Figure 5.4: Ulam Spiral with primes highlighted in red.

96 Chapter 5. Prime Numbers

5.2.1 Fermat-Gauss Prime split
Let us recall as Fermat primes that subset of primes {2,3,5,7,11, · · ·} that can be generated by
4n+1. We achieve this partition similarly to previously as per the code snippet:

def split_primes(n):
fermat_primes = set()
other_primes = set()
for i in range(2, n):

if is_prime(i):
if pow(2, i-1, i) == 1:

if i \% 4 == 1:
fermat_primes.add(i)

else:
other_primes.add(i)

return fermat_primes, other_primes

Some coding notes are:
⋆ fermat_primes = set() creates (and defines) the empty Fermat prime set.
⋆ The if pow(2, i-1, i) == 1 clause is checks whether 2(i−1) mod i is equal to 1.
⋆ The pow() function is used to perform modular exponentiation, which calculates the result

of raising 2 to the power of (i-1) modulo i. The mod operation returns the remainder when
2(i−1) is divided by i, i.e. to check if i is a Fermat prime, a prime number of the form 2(p−1)

where p is also a prime.
We illustrate our delineation of the two prime factor types by color coding them in blue and red.

Figure 5.5: Ulam Spiral for Number Persistence and Zap Depth

This is achieved in the code, smallDotUlamFermatS piral.ipynb by the snippet

def ulam_spiral(s, E):
x, y = 0, 0
dx, dy = 0, -1
spiral = {}
for n in range(s, E+1):

if is_prime(n):
spiral[(x,y)] = ’red’

else:

https://colab.research.google.com/drive/1p3ozdiWW-DmKrDYvUj4P0rCf3d4A5Sy1?usp=sharing

5.2 Prime Epigraphing 97

spiral[(x,y)] = ’white’
if x == y or (x < 0 and x == -y) or (x > 0 and x == 1-y):

dx, dy = -dy, dx
x, y = x+dx, y+dy

return spiral
\label{ulamSpiral:code}

Some coding points of note here
• for-loop structure syntax in which no next is required as in visual basic;
• if-else clause structures first delivers red or white c-ordinate points depending on whether

number is prime and then separately shifts across and up co-ordinate plane.

5.2.2 Twin primes
The distribution and frequency of coupled prime pairs are a subject of much focus. Among these,
twin primes , which are pairs of the form (p, p+2), have garnered significant attention. The natural
conjecture is that as numbers grow larger, twin primes become less frequent as the likelihood of
both p and p+2 being prime diminishes with increasing p. Roughly the probability of a randomly
chosen odd number p being prime is about 1/ ln(p), implying that the joint probability of p and
p+2 being prime is approximately 1/(ln(p) · ln(p+2)). of the form p, p+2. We can just as well

Figure 5.6: Ulam Spiral showing Twin Primes for up to 1000,10000,50000 and 100000.

define coupled primes of the form p, p+2n for any integer n. For larger gaps, n > 1 the term "twin

98 Chapter 5. Prime Numbers

primes" is replaced by more general descriptions, such as "cousin primes" for n = 2 and "sexy
primes" for n = 3, or simply "primes with a gap of 2n" for larger n. We can reasonably expect the
frequency of these generalized prime pairs to decrease more rapidly than that of twin primes as n
increases. This is because the larger the gap 2n, the higher the probability that at least one number
within the interval [p, p+2n] is composite, a likelihood that escalates with n.

Figure 5.7: Ulam Spiral showing Paired Primes of differences 4 and 32.

A snippet from the code follows.

def is_twin_prime(n):
return is_prime(n) and (is_prime(n-2) or is_prime(n+2))

for coord in spiral:
if spiral[coord] == ’red’:

ax.scatter(coord[0], coord[1], color=’red’, s=3)
if is_twin_prime(s):

ax.add_patch(plt.Rectangle((coord[0]-0.5, coord[1]-0.5), 1, 1,
fill=False, edgecolor=’blue’, linewidth=1))

if plot_numbers:
ax.text(coord[0], coord[1], str(s), color=’grey’, ha=’center’,

va=’center’, fontsize=8)

5.2.3 Ulam Spiral for Number Persistence
The persistence of a number, [10] is defined as the number of steps required to reduce it to a
single-digit number by repeated multiplication. For example, for the number 387:

3∗8∗7 = 168 → 1∗6∗8 = 48 → 4∗8 = 32 → 3∗2 = 6

The persistence of 387 is 4. Below is the Ulam Spiral highlighting the persistence of numbers from
1 to 100.

5.2.4 Ulam Spiral for Zap Depth
The Zap Depth, [10] of a number is the number of steps needed to reach a single-digit number by
continuously summing the squares of the digits. For example, the zap depth of 31 is 2, calculated
as follows:

32 +12 = 10 → 12 +02 = 1

https://colab.research.google.com/drive/1qyDEbWt6gnFmL75O_J7vwe2K3pLWXhcg?usp=sharing

5.2 Prime Epigraphing 99

Below is the Ulam Spiral highlighting the Zap Depth of numbers from 1 to 100.

Figure 5.8: Ulam Spiral for Number Persistence and Zap Depth

5.2.5 n-ply Ulam spirals
In light of a our n-ply definition we wish to see how the Ulam spiral appears when we colour
numbers according to whether they are 1-ply (prime) as red or a gradient of blue that spans from
light to dark with increasing f-ply. When we increase to 50,000 numbers again we can start to see
some diagonal lines developing:

Figure 5.9: Ulam Spiral with graded ply colouring for n=1000 and n=50,000.

Here the variations of colour do not reveal the full variety of f-ply that exist. What seems more
natural to describe the variety of rectangles that can be constructed for a number is a simple
histogram with bins the f-ply. Let us construct histograms of plies up to a user defined number, n.

As we increase n we see that 2,4 and 8 ply increasingly dominate.
Ranking the top 4 for increasing values of n we have:
1-ply (Prime) numbers numbers are ousted from equal top spot when n=100.
Questions that beg:
• For what value of n do double ply numbers remain the most numerous?

100 Chapter 5. Prime Numbers

Figure 5.10: Histograms of f-ply of positive integers for up to n=100,1000 and 10,000.

Figure 5.11: f-ply of positive integers for n=100,000 with linear and n=1,000,000 with log axis.

• Why are even -ply numbers apparently more numerous than odd-ply numbers?
• Does the even preference sustain as n tends to infinity?

Here is a snippet from the f ailedPrimeGenerators code used to generate these:

E = int(input(’Enter ending number: ’))
ply_histogram = get_ply_histogram(E)
plt.bar(ply_histogram.keys(), ply_histogram.values(), color=’blue’, alpha=0.7)
plt.xlabel(’Ply-Number’)
plt.ylabel(’Count’)
plt.title(f’Histogram of Ply-Numbers up to {E}’)
if len(ply_histogram) > 10:

plt.xticks(list(ply_histogram.keys()), rotation=45, fontsize=4)
else:

plt.xticks(list(ply_histogram.keys()))
plt.tight_layout()

1. User is prompted to input an ending number, which is stored as E and represents the largest
value for which ply-values will be calculated.

2. The function get_ply_histogram is called with E as an argument and computes the his-
togram of ply-values for numbers up to E. The histogram is a dictionary where each key
represents a unique ply-value and the associated value represents the frequency of that
ply-value.

3. The histogram data is plotted as a bar graph with x-axis the unique ply-values and y-axis the
frequencies of these ply-values.

4. The x-axis is labeled as "Ply-Number".
5. A title, "Histogram of Ply-Numbers up to E", is set for the plot.
6. If there are more than 10 unique ply-values in the histogram, the labels are rotated by 45

https://colab.research.google.com/drive/16Az1pxDfvcCKC_azLr7QxIkeDzMHr_ji?usp=sharing
https://colab.research.google.com/drive/141JlCCisnhfgcD3iTk2OzzxniY9fi8Ou?usp=sharing

5.2 Prime Epigraphing 101

n rank 1 rank 2 rank 3 rank 4

10 1 2 - -

100 2 1 3 4

1,000 2 4 1 3

10,000 2 4 1 3

100,000 2 4 8 6

1,000,000 2 4 8 6

10,000,000 4 2 8 6

Table 5.6: f-ply rankings for increasing values of n

degrees and their font size is reduced to avoid overlap.
7. Finally, the layout of the plot is adjusted to ensure all elements fit well within the figure area.

5.2.6 Perimeter-Area ratio of f-plies
Given our geometric picture of composites it is interesting to investigate the Perimeter/Area ratio of
such rectangles. We know that squares of all rectangles have the minimum P/A amongst rectangles.
What would Ulam look like if instead of plotting by number of factors we plotted grading by P/A.
For n up to 10000 we have the following:

Figure 5.12: Ulam Spiral for n up 10,000 graded by minimum P/A ratio of each rectangle number.

The function that finds the minimum ratio amongst the two factor pairs making the rectangle

def min_pa_ratio(n, factor_set):
min_ratio = float(’inf’)

102 Chapter 5. Prime Numbers

for f1 in factor_set:
f2 = n // f1
P = 2 * (f1 + f2)
A = f1 * f2
ratio = P / A
if ratio < min_ratio:

min_ratio = ratio
return min_ratio

The function min_pa_ratio takes two arguments: an integer n and a set of factors factor_set.
Its purpose is to find the minimum perimeter-to-area ratio for rectangles with an area of n. The
function works as follows:

1. Initialize min_ratio to infinity. This variable will store the minimum ratio found.
2. Iterate through each factor f1 in the factor_set.
3. For each f1, calculate f2 as the integer division of n by f1. This represents the complemen-

tary factor such that f1 × f2 equals n.
4. Calculate the perimeter P of the rectangle as 2× (f1+f2).
5. Calculate the area A as f1 × f2, which should equal n.
6. Compute the perimeter-to-area ratio as P divided by A.
7. If this ratio is less than the current min_ratio, update min_ratio with this new ratio.
8. After iterating through all factors, return the min_ratio.

5.3 Complex Gaussian Integers and Primes 103

5.3 Complex Gaussian Integers and Primes

The Gaussian integers (Z[i]) are a subset of the field of complex numbers of the form a+bi, where
a and b are integers exemplifying an integral domain because they:

• are a commutative ring under addition and multiplication.
• maintain the integrity of multiplication, evidenced by the absence of zero divisors.

A ring1 is an algebraic structure consisting of a set equipped with two binary operations: addition
whose archetype are the set of integers Z with addition and multiplication closed and associative
under both operations with an additive identity (0), and every element with an additive inverse.

Definition 13 Commutative Rings are sets R which possess operations closed under addition
and multiplication beyond the usual integer arithmetic that satisfy the following conditions:

Addition and multiplication are associative and commutative.
1.2. There exists an additive identity 0 ∈ R such that a+0 = a for all a ∈ R.
3. Each element a ∈ R has an additive inverse −a ∈ R such that a+(−a) = 0.
4. Multiplication is distributive over addition: a · (b+ c) = a ·b+a · c for all a,b,c ∈ R.

The set of Gaussian integers, Z[i], where i is the imaginary unit, is an example of a commutative
ring. The zero divisor condition is broken in the ring Z[i]/(5) of Gaussian integers modulo 5, as
the product of the (non-zero) elements 2+ i and 3+2i is zero (2+ i)(3+2i)≡ 0 mod 5.

Figure 5.13: Primes of 4n+1 and 4n+3 for of the Gaussian Integers.

1The concept of a ring originated from the German term "Zahlring," introduced by David Hilbert meaning a "number
ring," suggesting a collection of numbers.

104 Chapter 5. Prime Numbers

The Python script identifies Gaussian primes, according to whether the sum a+b of its real
and imaginary parts is prime and, if so, whether it is of (Fermat),4k+1 or (Gaussian) 4k+3 form.
Further those integers whose real or imaginary parts are zero are Gaussian primes if the non-zero
part is of 4k+3 form. The ’Failed Fermat’ composite alternatives are dotted in blue on the two
axes (5,0) = (1,2)× (1,−2) = (1+2i)× (1−2i).

color_map = {
’Fermat 4k+1’: ’red’,
’Gaussian 4k+3’: ’green’,
’Failed Fermat’: ’blue’, }

for category, color in color_map.items():
if category != ’Other’: # Exclude ’Other’ from the legend

subset = df[df[’category’] == category]
plt.scatter(subset[’m’], subset[’n’], c=color, label=category, s=2)

Figure 5.14: First 1000 Primes of 4n+1 and 4n+3 form of the Gaussian Integers.

1. Color Map Definition: A dictionary named color_map is defined, which assigns a specific
color to each category of data points.

2. Data Plotting: The code iterates over each category in the color_map dictionary and except
’Other’, it filters the DataFrame df to create a subset containing only the data points belonging
to the current category. The size of the scatter points is set to 2 for finer detail.

3. Legend Handling: The conditional statement within the loop (if category != ’Other’)
ensures that the ’Other’ category is not included in the legend of the plot.

https://colab.research.google.com/drive/1p7wXSjdOy6pU6_rRHLA0Xvshkgc6M7kR?usp=sharing

5.3 Complex Gaussian Integers and Primes 105

Integral Domain of Gaussian Integers
An integral domain is a commutative ring with no zero divisors. The term "integral" is used to
suggest the wholeness or completeness of the domain. Gaussian integers, a subset of the field2 of
complex numbers of the form a+bi where a,b ∈ Z, form an integral domain. In algebraic number
theory foundational structures such as commutative rings, e.g.Z[i] can be extended by operations
like modulo, that provide a more limited operational closure of the number system. While (Z[i])
form an integral domain (a commutative ring with no zero divisors), the set of numbers, a+b

√
−5

form only a commutative ring due to the presence of zero divisors. As such the Gaussian integers,
are characterized by the commutativity of its multiplication and fact that if the product of two
Gaussian integers is zero, then at least one of the multiplicands must be zero:

• (1+2i) · (3+ i) =−5+5i = (3+ i) · (1+2i)
• (a+bi)(c+di) = 0, then either a+bi = 0 or c+di = 0.

The Moat of Gaussian Integers:
Gaussian integers are complex numbers of the form a+bi, where a and b are integers and they
form a lattice on the complex plane punctuated with unique prime elements, known as Gaussian
primes. Now Gaussian integers of the form p+ ip, where p is a prime number, are not typically
Gaussian primes themselves because they can be factored into p(1+ i), except when p equals 2,
since 1+ i is a unit in the ring of Gaussian integers and also a Gaussian prime. So if we are to plot
the domain of Gaussian primes we observe the fractal pattern of 95.15) known as a Gaussian moat.

Figure 5.15: Gaussian Prime Moats up to n=70 and 500

The is_gaussian_prime function determines whether a Gaussian integer, expressed in the
form a+bi, is a Gaussian prime. The function works as follows:

def is_gaussian_prime(a, b):
if a != 0 and b != 0:

return isprime(a**2 + b**2)
else:

return isprime(max(abs(a), abs(b)))

2A field is a ring, with a complete algebraic structures in which every non-zero element has a multiplicative inverse.
The term "field" was first used by Moore in 1893. The field of complex numbers C has the property that every non-zero
element in C has a multiplicative inverse.

106 Chapter 5. Prime Numbers

• If both a and b are non-zero, the Gaussian integer is a prime if and only if a2 +b2 is a prime
number in the natural numbers. This is based on the norm of a Gaussian integer, which for
any Gaussian integer z = a+bi is given by N(z) = a2 +b2.

• If either a or b is zero, the Gaussian integer is a prime if the non-zero part is a prime number
in the natural numbers and the other part is zero. This handles the cases of a+0i and 0+bi.

The function can be described accordingly as:

is_gaussian_prime(a,b) =

{
isprime(a2 +b2) if a ̸= 0 and b ̸= 0,
isprime(max(|a|, |b|)) if a = 0 or b = 0.

This function takes two integers a and b as input and returns a boolean value indicating whether
a+bi is a Gaussian prime.

Definition 14 Quadratic Fields both real and imaginary, are fundamental in the study of
algebraic number theory. These include numbers of the form a+ b

√
d, for any square-free

integer d and a+b
√
−p, which are notable field extensions, Q(

√
d) and Q(

√
−p) of the rational

numbers Q. When d is positive, Q(
√

d) forms a real quadratic field.

Field Extension of Integers

In the case when d is a both negative and a prime −p, in which case the resulting field Q(
√
−p)

is an imaginary quadratic field that extends the rationals to include the square roots of negative
primes, forming a subset of the complex numbers C. Extending the set of integers Z with a surd
of the form

√
−p where p is a prime number, creates the algebraic structure of a ring, Z[

√
−p]

which consists of all numbers of the form a+b
√
−p, where a,b are integers with the following

properties:
• is closed under addition and multiplication.
• contains the elements of Z and

√
−p.

• forms an integral domain, short of a field, as not all elements have multiplicative inverses
within the ring.

The set of numbers of the form a+ b
√
−5 where a and b are integers forms a (multiplicative)

commutative ring but not an integral domain due to the presence of zero divisors, violating the
integral aspect of an integral domain:

• (1+
√
−5)(2−

√
−5) =−3+

√
−5 = (2−

√
−5)(1+

√
−5)

• (1+2
√
−5)(1−2

√
−5) = 21 and (2+

√
−5)(2−

√
−5) =−1, and yet 21 · (−1) = 0,

While the Gaussian integers form a subring of the complex numbers and share some properties
with the integers, surd-based quadratic field systems do not.

Metallic numbers, such as the golden and silver ratio, like b+
√

b2+4ac
2a when extended to the

complex plane, can have complex forms with irrational components. The metallic number-based
complex number z = 1+i

√
b2+4

2 and its conjugate z = 1−i
√

b2+4
2 has a norm of z, given by |z|2 = zz,

which simplifies to b2+5
4 . In cases where this norm is a prime number, it is of the Fermat form

(4k+1) as evidenced from:

b2 +5
4

= k+
1
4

for some integer k.

In Z[i], a Fermat prime cannot be a Gaussian prime since it can be expressed as the sum of two
squares. However, in the extended field that includes irrational numbers, the complex forms of
metallic numbers exhibit a connection between their norms and Fermat primes.

5.4 Prime Spiral Polar Rays 107

5.4 Prime Spiral Polar Rays

Twin primes (marked in red below) are pairs of primes that are two units apart, i.e., [p, p+2] where
both p and p+2 are prime. Below are polar coordinate scatterplots where now each point, (n,n)
instead represents an integer n up to 106, and the radial coordinate is proportional to log10(n).

Figure 5.16: Spiral of twin (p,p) up to 500.

Figure 5.17: Spiral of twin (p,p) up to 1000000.

https://www.youtube.com/watch?v=EK32jo7i5LQ

108 Chapter 5. Prime Numbers

Figure 5.18: Polar Spirals delineating prime types

All integers can be expressed in one of the following residue classes of mod 6) forms: 6n,
6n+1, 6n+2, 6n+3, 6n+4, or 6n+5. Prime numbers, except for 2 and 3, conform to the form
6n±1 to avoid divisibility by 2 or 3 and on a polar plot the primes are more likely to appear at
angles corresponding to these forms. Similarly, residue classes mod 4, 4n+1 and 4n+3, cluster
also in twelve batches of four in each quadrant but along a different set of angles. Twin primes
appear in 9 pairs across each quadrant.

3Blue1Brown explores the prime spoke behaviour that conjures from the inherent spiral plotting
of (n,n) on a non-complex polar plane as a visual consequence of the relationship between Euler’s
totient function, φ and continued fraction approximations of π . As we are mapping primes onto
polar coordinates, their angular position is proportional to their magnitude. Since 3/1 is a crude
approximation of π , we find that 6n positions map to approximately 2π , meaning that after six
"turns", the points have traversed just under a full circle. Improved approximations can be obtained
from the continued fraction representation of π:

π = [3;7,15,1,292, . . .]≈ 3+
1

7+
1

15+
1

1+
1

292+ · · ·

≈ 3+
1
7
=

22
7

; 3+
1

7+ 1
15

=
333
106

; 3+
1

7+ 1
15+ 1

1

=
355
113

A better approximation, π ≈ 22/7, implies that 44n positions correspond to nearly 2π , creating
seven almost complete turns and leads to the primes 44n±1 delineating the circular structure. 355

113 as
the best rational approximation of π with a denominator of three digits results in 113 turns delivering
an almost completely divergent ray structure with barely a hint of spiralling. 710 as twice the
numerator of the fraction 355

113 has prime factorization 710 = 2×5×71, and is divisible by 5 which
we observe in the polar plot as the primes come in batches of 4. Euler’s totient function, φ(n) counts
the integers up to n that are coprime (relatively prime) to n. We have φ(710) = 710 · 1

2 ·
4
5 ·

70
71 = 280

filtering out multiples of 5 giving the "missing teeth" in the radial distribution. The terms 1
2 , 4

5 , and
70
71 act as filters to exclude non-coprimes. The reader is invited to explain the 36 twin prime pairs
and to adapt the code overleaf to consider semi-primes or semi-perfect number patterns.

5.5 Magic Squares with an Ulam twist 109

5.5 Magic Squares with an Ulam twist
Magic squares, often relegated to the realm of recreational mathematics hold a quaint charm for
enthusiasts will not capture our attention for too long save for looking at the implementation of a
nice generating routine that produces magic squares with primes identified with a nod to Ulam of
the following form:

Figure 5.19: 9×9 Magic square generated by Siamese method with central element 41.

A key characteristic of an odd-ordered magic square is its central number, which can be calculated
using the formula:

Central Number =
1
2
(n2 +1)

where n is the side length of the square so for a 9x9 magic square the central number is 1
2(9

2 +1) =
41, which suggestively corresponds to Euler’s famous quadratic formula. Accordingly we might
seek this relationship and investigate pairs (a,b) for the quadratic formula n2 +an+b determining
if b can be the central number of a magic square by finding an integer n such that b = 1

2(n
2+1) The

Siamese method as nicely articulated in [9] for generating an odd-ordered magic square follows
these steps:

1. Start with the number 1 in the bottom middle cell.
2. Subsequent numbers are placed in a diagonally down-right pattern.
3. If this movement leads outside the square’s boundaries, it wraps around to the opposite side.
4. If a cell is already filled or the next diagonal cell is outside the bottom-right corner, the next

number is placed directly above the current one. Continue until square is filled.

110 Chapter 5. Prime Numbers

The algorithm ensures that each row, column, and main diagonal of the resulting n×n square sums
up to the same magical number and is implemented in the following code:

def generate_magic_square(n):
magic_square = [[0]*n for _ in range(n)]# Create zero filled n x n matrix
num = 1
i, j = n-1, n//2 # Starting position
while num <= n**2:

Place the current number
magic_square[i][j] = num
num += 1
new_i, new_j = (i + 1) % n, (j + 1) % n

Check if the new position is filled or at the bottom right corner
if magic_square[new_i][new_j] != 0 or (i == n-1 and j == n-1):

i = (i - 1 + n) % n # Move one square up
else:

i, j = new_i, new_j
return magic_square

Discriminating between useful squares
The code, 163discriminant.ipynb generates a list of (a,b) pairs, and plots them to identify those
that can form the central number of a magic square. The zip function is used to combine multiple
iterable objects (lists or tuples):

for a, b, color in zip(a_values, b_values, colors):
if color == ’red’:

plt.scatter(a, b, color=color, s=50) # Larger red dots
else:

plt.scatter(a, b, color=color, s=10) # Smaller blue dots

Specifically, zip(a_values, b_values, colors) creates an iterator that aggregates elements
from three lists: a_values, b_values, and colors. Each element in the iterator is a tuple
(a,b,color), where a is from a_values, b is from b_values, and color is from colors. The for
loop then iterates over these tuples such that the point (a,b) is plotted on the scatter plot with a
specified color and contingent size. The code identifies the Euler solution amongst many others
that can also entertain a discriminant of 163,

a b Magic Square Size (n)

1 41 9

9 61 11

17 113 15

33 313 25
...

...
...

7921 15685601 5601

Figure 5.20: Set of (a,b) that deliver both central Magic number and discriminant of 163.

https://colab.research.google.com/drive/1ZVbq5zaZ3RkIrUelwQosNCxxbMiNgWx8?usp=sharing
https://colab.research.google.com/drive/12V7cOLcepHBohDRf-CNSK_yxtg-mtaKG?usp=sharing

5.6 Perfect Numbers 111

5.6 Perfect Numbers
The search for new perfect numbers is ongoing. It is unknown whether there are any odd perfect
numbers.

Definition 15 Perfect number Perfect numbers are positive integers that are equal to the sum of
their proper divisors (excluding themselves). The first few perfect numbers [7] are:

6 (the divisors are 1,2,3)
•• 28 (the divisors are 1,2,4,7,14)
• 496 (the divisors are 1,2,4,8,16,31,62,124,248)
• 8128 (the divisors are 1,2,4,8,16,32,64,127,254,508,1016,2032,4064)
• 33,550,336

All known perfect numbers have a close connection with Mersenne primes, such that if 2p −1 is
Mersenne, then

(
2p−1

)
(2p −1) is perfect. This is implemented in the following code3,

for _ in range(4): # To find the next 4 perfect numbers
p = next_p(p)
while not is_prime(2**p - 1):

p = next_p(p)
perfect = (2**(p - 1)) * ((2**p) - 1)
ln = 2**p - 1 # Mersenne prime, the largest divisor

A more brute force way to find a perfect numbers, is to use the recursion relation, [16]

ln = 2ln−1 +1

to find the ln, that is the cumulative sum from 1 to a prime number. Each perfect number is then the
sum of the numbers from 1 to ln, inclusive:

• For ln = 2, the Perfect Number is 6 and the Cumulative Sum is 1+2+3.
• For ln = 3, the Perfect Number is 28 and the Cumulative Sum is 1+2+3+4+5+6+7.
• For ln = 31, the Perfect Number is 496 and the Cumulative Sum is 1+2+3+ · · ·+30+31.

The code4 implements the algorithm in which the recursion continues until ln is a prime number:

def next_ln(ln):
while True:

ln = 2 * ln + 1
if is_prime(ln):

return ln

We see in the code snippet below the use of a loop up to the 6th perfect number5 achieves the
cumulative summation.

ln = 3 # as 2 corresponds to the first perfect number 6
for _ in range(6): # To find the next 6 perfect numbers

Calculate perfect number using cumulative sum
cumulative_sum_list = [i for i in range(1, ln + 1)]
perfect = sum(cumulative_sum_list)
cumulative_sum = ’+’.join(map(str, cumulative_sum_list))
print(f"Perfect Number: {perfect}, Cumulative Sum: {cumulative_sum}")
ln = next_ln(ln)

3MersennesPrimeToPerfect.ipynb
4perfectRecursion.ipynb
5Code crashes beyond that on google colab without paying extra!

https://colab.research.google.com/drive/1ILROr5o0uwQ6rBiFzCVREHDbbMVgj7FD?usp=sharing
https://colab.research.google.com/drive/1D6s6W9VN7pcXnrYUWR-nJkTovhddLwQD?usp=sharing

112 Chapter 5. Prime Numbers

5.6.1 Perfect-like Miscelania
Some properties of the Perfects that the reader is encouraged to explore are gathered here All known
perfect numbers except 6 have reduced (digital roots) of 1:

496 → 4+9+6 = 19 → 1+9 → 10 → 1+0 = 1

28 → 2+8 = 10 → 1+0 = 1

8128 → 8+1+2+8 = 19 → 1+9 → 10 → 1+0 = 1

The perfect number 496 is the sum of the series from 1 to 31. As Gauss advises writing the series 1
to 16 in ascending order and then below it in descending order from 31 to 17:

1 2 3 4 5 6 7 89 10 11 12 13 14 15 16

31 30 29 28 27 26 25 2423 22 21 20 19 18 17 −

32 32 32 32 32 32 32 3232 32 32 32 32 32 32 16

delivers the sum of all the terms as 15×32+16, which is also equal to 31×32
2 , the perfect number

496. All known perfect numbers are even and end in 6 or 28 (preceded by an odd number). The
sum of the reciprocals of all its divisors is 2. For example,

6 : 1+
1
2
+

1
3
+

1
6
= 2

Palindromic numbers
Here are some examples of squares of numbers that are palindromic:

112 = 121

1112 = 12321

11112 = 1234321

111112 = 123454321

1111112 = 12345654321

11111112 = 1234567654321

111111112 = 123456787654321

1111111112 = 12345678987654321

11111111112 = 1234567900987654321

232 = 4×58

23432 = 4×5858

2345432 = 4×586358

234565432 = 4×586414358

23456765432 = 4×5864194358

2345678765432 = 4×586419749358

234567898765432 = 4×58641974691358

5.6 Perfect Numbers 113

All these numbers are divisible by 4. Consider the palindromic numbers:

232,23432,2345432,234565432, . . .

Note: What are the series of digits that we need to insert at each stage?
We observe the following series:

85,63,41,19,96,74, . . .

Observation: Each subsequent number is 22 less than the previous number, cycling back after
adding 99 to 19 to start afresh:

Number Difference

85

63 −22

41 −22

19 −22

96 +77(−22+99)

74 −22

This pattern is consistently observed in the generation of the palindromic numbers. Consider
the multiplication of 123456789 by numbers 2 through 8:

123456789×2 = 246913578

123456789×3 = 370370367

123456789×4 = 493827156

123456789×5 = 617283945

123456789×6 = 740740734

123456789×7 = 864197523

123456789×8 = 987654312

Observation:
In each result, except where the multiplier is a multiple of 3 (i.e., 3 and 6), all nine digits are
repeated again in the product. The products 370370367 and 740740734 include digit repetition but
not all nine digits from 1 to 9 are present.

114 Chapter 5. Prime Numbers

5.6.2 Snaking Divisors
Consider the series in which the sum of the proper divisors of the abundant number, 30, begets the
abundant 42 which begets numbers that peak at the divisor deficient 259 from which we descend.

Starting Number Divisors

30 [1, 2, 3, 5, 6, 10, 15]

42 [1, 2, 3, 6, 7, 14, 21]

54 [1, 2, 3, 6, 9, 18, 27]

66 [1, 2, 3, 6, 11, 22, 33]

78 [1, 2, 3, 6, 13, 26, 39]

90 [1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45]

144 [1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72]

259 [1, 7, 37]

45 [1, 3, 5, 9, 15]

33 [1, 3, 11]

15 [1, 3, 5]

9 [1, 3]

4 [1, 2]

3 [1]

Fig (5.21) plots such a divisor series from 1 to 40 with blue starting and red ending points. Note
the omission of prime numbers with no proper divisors other than 1 while Perfect numbers (6,28)
whose sum of proper divisors equal the number itself are identified as unending in their greyness.

Figure 5.21: Proper Divisor Series starting Blue ending Red.

5.6 Perfect Numbers 115

Early doors, just 138 possesses a complex lineage that only half a century ago, without modern
computational tools, would have been a daunting to determine. Its series enters an extended phase
of abundance, where each subsequent number is larger than the preceding one spanning 117 terms,
reaching a peak at 179,931,895,322 after which a gradual descent of an additional 60 terms takes
us to 1.

Figure 5.22: Proper Divisors in interval 1-200 for a maximum of 200 terms in any one series.

We can see in fig (5.23) a cyclical behavior with period of two of the amicable6 pair (220, 284).

Figure 5.23: Proper Divisors in interval 1-500 with max 500 terms in sequence.

Our implementation allows for setting a maximum length for the series which curtails those series
that do not converge to 1 within a tolerable number of steps and are marked with a grey dot at

6Sociable groups, as generalizations of amicable pairs to cycles of longer periods will also not converge to 1. Happily
the first crowd of such sociable numbers does not occur before 1,264,460.

116 Chapter 5. Prime Numbers

the last computed value. The relevant snippet from snakeDivisorGreyEndBelowTolerance.ipynb
follows:

def visualize_all_series(min_number, max_number):
fig, ax = plt.subplots(figsize=(10, 6))
colors = [’blue’, ’green’, ’yellow’, ’orange’]
num_colors = len(colors)
end_color = ’red’ # Color for series ending in 1
non_converging_color = ’gray’ # Color for series not converging to 1

The sympy library routine is used to work out proper divisors and generate_series is repeatedly
summing the proper divisors of a number until the number becomes 1 or the series reaches a
specified maximum length.

from sympy import divisors, isprime
def get_divisor_sum(n):

return sum(divisors(n)) - n # Subtract n to exclude the number itself
def generate_series(start, max_length=5000):

series = [start]
while start > 1 and len(series) < max_length:

start = get_divisor_sum(start)
series.append(start)

return series

• start: starting number for the series.
• max_length (optional): maximum length of the series. Defaults to 5000 if not specified.
• In a loop, calculate the sum of proper divisors of the current number using get_divisor_sum
• Append result to the series and repeat until the current number becomes 1 or the series

reaches the maximum allowed length.

for start_number in range(min_number, max_number + 1):
if not isprime(start_number): # Skip primes

series = generate_series(start_number)
step = max(1, len(series) // num_colors)
for i, number in enumerate(series):

if i == len(series) - 1: # Last number in series
color = end_color if number == 1 else non_converging_color

else:
color_index = min(i // step, num_colors - 1)
color = colors[color_index]

ax.scatter([start_number], [number if number > 0 else 1], color=color, s=20)

The loop iterates through a range of numbers (from min_number to max_number) and visualizes
each number’s divisor series on a scatter plot.

• Skip the number if it is prime (isprime function checks for primality).
• Generate the divisor series for the number using the generate_series function.
• Determine the color of each point in the series based on its position:

– The last number in the series is colored with end_color if it’s 1, indicating successful
convergence to 1, or non_converging_color if it’s not 1, indicating the series did not
converge to 1 within the maximum length.

https://colab.research.google.com/drive/1FbgZMxvx2fzZbXav2apgCvI9atxIe5NJ?usp=sharing

5.6 Perfect Numbers 117

– Other numbers in the series are colored based on their position, using a set of predefined
colors (colors) and dividing the series into segments (num_colors).

• The x-coordinate in the scatter plot is the starting number, and the y-coordinate is the number
in the series. The color is determined as described above.

118 Chapter 5. Prime Numbers

5.6.3 Diversity Density Ratio revisited
The Ulam spiral that reveals the pattern of semi-perfect abundance if not quite non semi-perfect
abundance (coded with UlamNumberClassify.ipynb

Figure 5.24: Ulam Spiral showing Number imperfections.

Figure 5.25: Ulam spiral of abundant composites,a with multiple, m proper factor representations
(green to red, small to BIG) by their Divisor Density Ratio, m/a and Semi-Perfect numbers colored
green to red, small to Big by P/A ratio.

https://colab.research.google.com/drive/1Y_5g6sllek4cnOFgqnEExaYUUZdRva5s?usp=sharing

5.7 Density of Primes in Residue Classes 119

5.7 Density of Primes in Residue Classes

The distinction between the densities of primes of the forms 4n+1 (or equivalently 6n+5) and
4n+3 (or equivalently 6n+1) is a longstanding observation in number theory.

5.7.1 Prime races

As previously discussed the primes can be partitioned into various grouping schemes. Numbers
of the form 6n+1 and 6n+5 are always odd and do not usually have a plethora of small prime
factors, a characteristic which makes it uncommon for them to have a large set of divisors whose
sum would categorize them as abundant, especially in lower ranges.

1. Numbers of the form 6n+1:
• These are 1 more than a multiple of 6.
• If they are prime, they clearly aren’t abundant.
• If they are composite, their smallest prime divisor can’t be 2 or 3. This implies that

their smallest possible prime factor is at least 5 (or even larger if they aren’t divisible by
5). Such numbers can’t have many small prime factors, making it less likely for their
divisors to sum up to a value much larger than the number itself.

2. Numbers of the form 6n+5:
• These are 1 less than a multiple of 6.
• Again, if they are prime, they aren’t abundant.
• If they are composite, their smallest prime divisor can’t be 2 or 3. Moreover, numbers

of the form 6n+5 aren’t divisible by 5. This ensures that their smallest possible prime
factor is relatively large, making it less likely for them to be abundant.

For larger numbers, a more in-depth analysis would be needed to determine the abundance of these
forms which we will address in the following by gathering first some related observations:

1. Quadratic Residues and Non-residues:
• A prime p is of the form 4n+1 if and only if -1 is a quadratic residue modulo p, i.e.,

there exists an integer x such that x2 ≡−1 (mod p).
• In contrast, for primes of the form 4n+3, -1 is a quadratic non-residue modulo p.

2. Factors of Integers:
• When you multiply two numbers of the form 4n+1, the result is also of the form 4n+1.

For example, 5(4(1)+1) and 13(4(3)+1) are both primes, and their product, 65, is
4(16)+1.

• However, when you multiply a number of the form 4n+3 by another of the same form,
the result is of the form 4n+1. This means that composite numbers of the form 4n+1
can have prime factors that are both of the form 4n+1 and 4n+3.

• On the other hand, composite numbers of the form 4n+3 must have all their prime
factors of the form 4n+3. This restrictiveness implies that numbers of the form 4n+3
have fewer ways to be factored and thus are more likely to be prime.

3. Distribution in Arithmetic Progressions:
• It’s a consequence of the generalized Riemann hypothesis that primes are equally

distributed among different residue classes, meaning, in the long run, primes of the
form 6n+ 1 and 6n+ 5 should have similar densities. But for smaller ranges (e.g.,
below 109), the distribution might not be balanced.

4. Empirical Observations:
• In practice, this code seems to suggest that primes of the form 4n+3 are more frequent

in certain ranges. However, as numbers get large, the difference in densities decreases.
Furthermore, it’s unclear if one form surpasses the other infinitely often or if they
eventually balance out.

https://colab.research.google.com/drive/19V2Ylf1OghWkzvtnn969MeocpAvp2wnW?usp=sharing

120 Chapter 5. Prime Numbers

Figure 5.26: Histogram of Deficiency vs Abundant frequencies by Perimeter/Area ratio.

Figure 5.27: cumulative staircase of 4n+1 and 4n+3 prime generators and rolling differences for
n=1000 n=1,000,000.

n Prime Factors P(n) P/A Sk Classification

60 [2, 2, 3, 5] 14.00 0.04 108 semi-perfect abundant

61 [61] 31.00 0.51 1 deficient

62 [2, 31] 24.00 0.19 34 deficient

63 [3, 3, 7] 17.33 0.09 41 deficient

64 [2, 2, 2, 2, 2, 2] 18.14 0.09 63 deficient

65 [5, 13] 21.00 0.16 19 deficient

66 [2, 3, 11] 18.00 0.07 78 semi-perfect abundant

67 [67] 34.00 0.51 1 deficient

68 [2, 2, 17] 21.00 0.10 58 deficient

69 [3, 23] 24.00 0.17 27 deficient

70 [2, 5, 7] 18.00 0.06 74 weird (70)

Table 5.7: Classification based on divisors and their properties (continued)

5.8 Euler’s Quadratic Prime Generator 121

5.8 Euler’s Quadratic Prime Generator
The search for a formula that generates all prime numbers led Euler to his quadratic prime generator
formula, n2 +n+a, where a is a constant and n ranges through positive integers, produces primes
for many values of n and specific choices of a. The most famous incarnation is given by:

n2 +n+41

which produces primes for all values of n up to n = 40. For n=41 we have 412 + 41+ a which
regardless of the value of a, the resulting expression is composite:

n 137n Prime?

36 1373 prime

37 1447 prime

38 1523 prime

39 1601 prime

40 1681 composite

41 1763 composite

42 1847 prime

43 1933 prime

44 2021 composite

The function euler_generator(n) taken from code takes a single argument n representing
the upper limit of the sequence to be generated and iterates over a range of positive integers i from
1 to n using a for loop.

def euler_generator(n):
for i in range(1, n+1):

p = i**2 + i + 41
if is_prime(p):

yield (i, p, "prime")
else:

yield (i, p, "composite")

Within the loop, Euler’s formula p(n) = n2 +n+41 is applied to calculate the value of p and the
function then checks whether the calculated value p is a prime or a composite number using an
external function is_prime(p). If p is prime, a tuple (i, p,"prime") is yielded, indicating that the
generated value is a prime number otherwise, a tuple (i, p,"composite") is yielded.

https://colab.research.google.com/drive/1EKPnzEEhDP-ACjiC3K9Cy4Sgu1qePlF6?usp=sharing

122 Chapter 5. Prime Numbers

5.9 Helgott’s Quadratic Prime Generator Formula

Consider the discriminant of p(n) = n2 +n+41 = 0 using the coefficients of the general quadratic
equation ax2 + bx+ c = 0, where a = 1, b = +1, and c = 41 calculated using the formula D =
b2 −4ac.

D = (−1)2 −4 ·1 ·41

D = 1−164 =−163

Number theorists have explored alternative quadratic formulas with varying degrees of suc-
cess. One notable example is the quadratic formula involving the square root of 163, given
by 1

2

(
(9+

√
163)n2 +3n+1

)
. Helgott’s quadratic prime generator formula, n2 −79n+1601, is

another. Consider its discriminant using the coefficients of the general quadratic equation a = 1,
b =−79, and c = 1601

D = (−79)2 −4 ·1 ·1601 = 6241−6404 =−163

Both Helgott’s and Euler’s quadratic formula have a common discriminant of −163. The relation-
ship between the discriminants and the primality results hints at the intricate connections between
quadratic expressions, discriminants, and prime generation. However, there are no other quadratic
formulas with a discriminant of −163 that generate prime numbers for consecutive positive in-
teger values of n. While there are other quadratic formulas with the discriminant −163, such as
n2 −163n+6721, they do not generate prime numbers for consecutive positive integer values of n.
The following code snippet:

x_fermat_euler, y_fermat_euler = [], []
x_non_fermat_euler, y_non_fermat_euler = [], []
for n in range(n_range):

prime = euler(n)
if is_prime(prime):

if prime % 4 == 1:
x_fermat_euler.append(n)
y_fermat_euler.append(prime)

else:
x_non_fermat_euler.append(n)
y_non_fermat_euler.append(prime)

taken from here initializes lists to store the values of n and the corresponding prime numbers for
each category. It then runs a loop that iterates through a range of n values up to a predefined limit,
denoted by n_range. For each n value:

1. The euler(n) function is called to generate a prime number using Euler’s quadratic prime
generator formula.

2. The code checks if the generated number is indeed a prime using the is_prime() function.
3. If the generated number is a prime:

(a) It checks whether the prime number is congruent to 1 modulo 4 (satisfying Fermat’s
theorem). If it is, the n and prime values are appended to x_fermat_euler and
y_fermat_euler, respectively.

(b) If the prime number is not congruent to 1 modulo 4, it means it doesn’t satisfy Fermat’s
theorem. In this case, the n and prime values are appended to x_non_fermat_euler
and y_non_fermat_euler, respectively.

https://colab.research.google.com/drive/1hxhBZ2Ns7NXTzxHeYBMa-W1F4MXvtmEB?usp=sharing

5.9 Helgott’s Quadratic Prime Generator Formula 123

The code categorizes the prime numbers generated by Euler’s formula based on whether they satisfy
Fermat’s theorem or not. The resulting lists x_fermat_euler, y_fermat_euler, x_non_fermat_euler,
and y_non_fermat_euler are expected to contain the data points representing these categories,
which are then to be used for further analysis or visualization.

5.9.1 Plotting the Quadratics

The following chart uses the plotting library, Matplotlib to plot with different markers and labels
for different categories of primes

Figure 5.28: Quadratic Generators of Primes.

deploying the ax.plot() function to create multiple plots on the same graph.

ax.plot(x_fermat_euler, y_fermat_euler, ’bo’, label=’Fermat primes from Euler’)
ax.plot(x_non_fermat_euler, y_non_fermat_euler, ’ro’, label=’Other primes from Euler’)
ax.plot(x_fermat_helfgott, y_fermat_helfgott, ’bs’, label=’Fermat primes from Helfgott’)
ax.plot(x_non_fermat_helfgott, y_non_fermat_helfgott, ’rs’, label=’Other primes from Helfgott’)
ax.set_xlabel(’n’)
ax.set_ylabel(’Prime’)
ax.set_title(’Quadratic Prime Generators’)
ax.legend()
plt.show()

Each plot() call takes in four arguments: x values, y values, marker style, and a label for
the legend and x_fermat_euler, y_fermat_euler, etc., represent lists of data points for the
respective categories of primes. The code further customizes the plot by setting labels for the x-axis
and y-axis, adding a title, and including a legend to differentiate between different categories, while
the plt.show() function is called to display the plot.

https://colab.research.google.com/drive/1hxhBZ2Ns7NXTzxHeYBMa-W1F4MXvtmEB?usp=sharing

124 Chapter 5. Prime Numbers

5.9.2 Significance of
√

163
The appearance of

√
163 in certain quadratic expressions that generate prime numbers hints at a

connection between quadratic formulas, irrational numbers, and the primes. Less prosaically, 163 is
the largest Heegner number, which plays a role in the theory of modular forms and elliptic curves:

• −1: Field: Q(
√
−1)

• −2: Field: Q(
√
−2)

• −3: Field: Q(
√
−3)

• −7: Field: Q(
√
−7)

• −11: Field: Q(
√
−11)

• −19: Field: Q(
√
−19)

• −43: Field: Q(
√
−43)

• −67: Field: Q(
√
−67)

• −163: Field: Q(
√
−163) (largest known Heegner number)

The Heegner numbers are important in understanding complex multiplication of elliptic curves and
class numbers of imaginary quadratic fields. The Heegner number 1 is associated with the field of
Gaussian integers, which are complex numbers of the form a+bi, where a and b are integers and
i =

√
−1 is the imaginary unit. The Heegner number 1 represents the simplest case of complex

multiplication and is related to the field of Gaussian integers. We will revisit these numbers later.
Consider for now the following rather astounding feature of this set of numbers.

n Hn eπ
√

Hn

1 1 23.14069263277926680189

2 2 85.01969522320720784592

3 3 230.76458831914575853261

4 7 4071.93209522526103683049

5 11 33506.14306559242686489597

6 19 885479.77768015523906797171

7 43 884736743.99977517127990722656

8 67 147197952743.99981689453125000000

9 163 262537412640768256.00000000000000000000

Table 5.8: Tabulated list of n, Hn, and eπ
√

Hn

What we notice is that in particular H7,H8,H9 are essentially integers (despite being the
exponential of irrational numbers) to increasingly better approximations. H9 being all but the
integer twenty-six trillion, two hundred fifty-three billion, seven hundred forty-one million, two
hundred sixty-four thousand, seventy-eight hundred twenty-five. The code snippet for the table is:

import math
heegner_numbers = [1, 2, 3, 7, 11, 19, 43, 67, 163]
print("{:<5} {:<15} {:<30}".format("n", "H_n", "e^(pi*sqrt(H_n))"))
print("-" * 45)
for n, H_n in enumerate(heegner_numbers, start=1):

index_product = math.exp(math.pi * math.sqrt(H_n))
print("{:<5} {:<15} {:<30.20f}".format(n, H_n, index_product))

https://colab.research.google.com/drive/11T6wIoD9c4Wjrojnlqv2p7QSgzDllg44?usp=sharing

5.9 Helgott’s Quadratic Prime Generator Formula 125

which begins by defining a list called heegner_numbers. The print function is used to display
the column headers with appropriate formatting string ":<5 :<15 :<30" aligning the columns for n,
Hn, and eπ

√
Hn to the left with specified widths. A for loop iterates through the heegner_numbers

list using the enumerate function, which provides both the index n and the corresponding Hn value.
Inside the loop, the code calculates eπ

√
Hn using the math.exp and math.sqrt functions. The

result is then printed with a precision of 20 (.20 f) decimal places.

Quadratic Prime Generator Formula with Discriminant
√
−67

As one might now suspect the quadratic formula associated with the imaginary quadratic field
Q(

√
−67) has a quadratic prime generator formula given by:

f (n) = n2 +n+17

The discriminant of a quadratic field Q(
√

d) is given by D = d if d ≡ 1 (mod 4), and D = 4d if
d ≡ 2,3 (mod 4). In this case, for Q(

√
−67), the discriminant D =−67 since −67 ≡ 3 (mod 4).

Only when n = 16 do we get a square composite number 172 = 289 as before with Euler’s formula:

n 67n Prime?

12 173 Prime

13 199 Prime

14 227 Prime

15 257 Prime

16 289 Composite

Table 5.9: Number type from Q(
√
−67) quadratic generator

Only when reaching n = 112 do we generate the first composite, 12673 comprised of product
of three distinct prime factors, 12673 = 19 ·23 ·29 which we will call a Cuboid composite:

n 67n 67n-Factors 163n 163n-Factors

112 12673 19, 23, 29 12697

113 12899 12923

114 13127 13151

115 13357 19, 19, 37 13381

Table 5.10: Prime Factorization Table for Quadratic Prime generators

Here we have tabulated the integers (composite and prime) arising from both f (n) = n2+n+17
and p(n) = n2 +n+41 quadratic generators. We will not call 13357 a cuboid composite as it has a
repeated (squared) prime factor. That is, RADICAL(13357) = RADICAL(192 ·37) = 19 ·37 whereas
RADICAL(12673) = 19 · 23 · 29. The first such cuboid number generated by Euler’s formula is
176861 = 47 ·53 ·71 for n = 420 as can be seen with this code. Its first rectangular composite
1763 = 41 ·43 presented in the table overleaf is also noteworthy.The reader might consider how
to investigate the frequency of composite generation between primes for both the series. Do they
follow the same pattern?

https://colab.research.google.com/drive/1cT4gb-2cJ1iIjRi_jeA75-2FpLUbrBPl?usp=sharing

126 Chapter 5. Prime Numbers

5.10 End Tables
Factor information of a number, n in which each row includes its prime factorization, the number
of prime factors (np), the number of distinct prime factors (rp), the difference between np and rp

(np − rp), the total number of factors (f), and the value of f −2 ·np.

Table 1: Prime Factorization Table

n P4n+1 C4n+1 P4n+3 C4n+3

1 5 7

2 9 11

3 13 15

4 17 19

5 21 23

6 25 27

7 29 31

8 33 35

9 37 39

10 41 43

11 45 47

12 49 51

13 53 55

14 57 59

15 61 63

16 65 67

17 69 71

18 73 75

19 77 79

20 81 83

21 85 87

22 89 91

23 93 95

24 97 99

25 101 103

26 105 107

27 109 111

Table 2: C(n)4n+1 and C(n)4n+3

C(n)4n+1 C(n)4n+3

2 3

5 6

6 8

8 9

11 12

12 13

14 15

16 18

17 21

19 22

20 23

21 24

23 27

26 28

29 29

30 30

31 33

32 35

33 36

35 38

36 39

38 42

40 43

41 45

42 46

44 48

46 50

5.10 End Tables 127

n 67n 67n-Factors 163n 163n-Factors

1 19 43

2 23 47

3 29 53

4 37 61

5 47 71

6 59 83

13 199 223

14 227 251

15 257 281

16 289 17, 17 313

17 323 17, 19 347

18 359 383

19 397 421

20 437 19, 23 461

21 479 503

22 523 547

23 569 593

24 617 641

25 667 23, 29 691

26 719 743

27 773 797

28 829 853

29 887 911

30 947 971

31 1009 1033

32 1073 29, 37 1097

33 1139 17, 67 1163

34 1207 17, 71 1231

35 1277 1301

36 1349 19, 71 1373

37 1423 1447

38 1499 1523

39 1577 19, 83 1601

40 1657 1681 41, 41

41 1739 37, 47 1763 41, 43

Table 5.11: A Rhythm in the Prime Factorization Table?

128 Chapter 5. Prime Numbers

Table 5.12: Naturals, n; primes, p; composites, c; oblong, o; semi-prime, s-p; deficient, d; abundant
; triangle t and square-binary, b, written by the code lists of numbers.ipynb

n p c o s-p d a t b

1 - - - - 1 - 1 1

2 2 - 2 - 2 - - -

3 3 - - - 3 - 3 -

4 - 4 - - 4 - - 4

5 5 - - - 5 - - -

6 - 6 6 6 - - 6 -

7 7 - - - 7 - - -

8 - 8 - 8 8 - - -

9 - 9 - - 9 - - 9

10 - 10 - 10 10 - 10 -

11 11 - - - 11 - - -

12 - 12 12 - - 12 - -

13 13 - - - 13 - - -

14 - 14 - 14 14 - - -

15 - 15 - 15 15 - 15 -

16 - 16 - - 16 - - 16

17 17 - - - 17 - - -

18 - 18 - - - 18 - -

19 19 - - - 19 - - -

20 - 20 20 - - 20 - -

21 - 21 - 21 21 - 21 -

22 - 22 - 22 22 - - -

23 23 - - - 23 - - -

24 - 24 - - - 24 - -

25 - 25 - - 25 - - 25

n p c o s-p d a t b

26 - 26 - 26 26 - - -

27 - 27 - 27 27 - - -

28 - 28 - - - - 28 -

29 29 - - - 29 - - -

30 - 30 30 - - 30 - -

31 31 - - - 31 - - -

32 - 32 - - 32 - - -

33 - 33 - 33 33 - - -

34 - 34 - 34 34 - - -

35 - 35 - 35 35 - - -

36 - 36 - - - 36 36 36

37 37 - - - 37 - - -

38 - 38 - 38 38 - - -

39 - 39 - 39 39 - - -

40 - 40 - - - 40 - -

41 41 - - - 41 - - -

42 - 42 42 - - 42 - -

43 43 - - - 43 - - -

44 - 44 - - 44 - - -

45 - 45 - - 45 - 45 -

46 - 46 - 46 46 - - -

47 47 - - - 47 - - -

48 - 48 - - - 48 - -

49 - 49 - - 49 - - 49

50 - 50 - - 50 - - -

https://colab.research.google.com/drive/16GI1pr7XCO6feBfL2COZDv9j6Qt5bH6c?usp=sharing

5.10 End Tables 129

Table 5.13: Naturals, n; primes, p; composites, c; oblong, o; semi-prime, s-p; deficient, d; abundant
; triangle t and square-binary, b.

n p c o s-p d a t b

51 - 51 - 51 51 - - -

52 - 52 - - 52 - - -

53 53 - - - 53 - - -

54 - 54 - - - 54 - -

55 - 55 - 55 55 - 55 -

56 - 56 56 - - 56 - -

57 - 57 - 57 57 - - -

58 - 58 - 58 58 - - -

59 59 - - - 59 - - -

60 - 60 - - - 60 - -

61 61 - - - 61 - - -

62 - 62 - 62 62 - - -

63 - 63 - - 63 - - -

64 - 64 - - 64 - - 64

65 - 65 - 65 65 - - -

66 - 66 - - - 66 66 -

67 67 - - - 67 - - -

68 - 68 - - 68 - - -

69 - 69 - 69 69 - - -

70 - 70 - - - 70 - -

71 71 - - - 71 - - -

72 - 72 72 - - 72 - -

73 73 - - - 73 - - -

74 - 74 - 74 74 - - -

75 - 75 - - 75 - - -

n p c o s-p d a t b

76 - 76 - - 76 - - -

77 - 77 - 77 77 - - -

78 - 78 - - - 78 78 -

79 79 - - - 79 - - -

80 - 80 - - - 80 - -

81 - 81 - - 81 - - 81

82 - 82 - 82 82 - - -

83 83 - - - 83 - - -

84 - 84 - - - 84 - -

85 - 85 - 85 85 - - -

86 - 86 - 86 86 - - -

87 - 87 - 87 87 - - -

88 - 88 - - - 88 - -

89 89 - - - 89 - - -

90 - 90 90 - - 90 - -

91 - 91 - 91 91 - 91 -

92 - 92 - - 92 - - -

93 - 93 - 93 93 - - -

94 - 94 - 94 94 - - -

95 - 95 - 95 95 - - -

96 - 96 - - - 96 - -

97 97 - - - 97 - - -

98 - 98 - - 98 - - -

99 - 99 - - 99 - - -

100 - 100 - - - 100 - 100

6. Cyclicality

6.1 Arithmetic and Metric of p−adic Numbers
For a given prime, p, its p-adic numbers offer a a novel way to think about separation in which
distances are not measured in terms of absolute differences, but rather the p-adic distance between
two numbers is determined by how divisible their difference is by powers of p.

p-adic Metric
The p-adic metric (or distance) between two numbers x and y is defined as:

dp(x,y) = |x− y|p,

where

|x− y|p = p−max{n:pn divides (x−y)}.

This metric has the counter-intuitive property that two numbers are considered "close" if their
difference is highly divisible by p. For example, consider two 7-adic numbers, x = 7 and y = 28,
in the 7-adic system. Their difference, 28− 7 = 21, is divisible by 7 but not by 72. Therefore,
the 7-adic distance between x and y is d7(7,28) = |21|7 = 7−1 = 1

7 . This compares to the 7-adic
distance d7(15,64) = |49|7 = 7−2 = 1

49 , indicating that 64 is "closer" to 15 than 28 is to 7 in the
7-adic metric system. For any p-adic numbers x and y, the p-adic metric dp(x,y) satisfies the
following:

• Non-negativity: dp(x,y)≥ 0 for all x,y, with equality if and only if x = y.
• Symmetry: dp(x,y) = dp(y,x), reflecting the metric’s indifference to the order of x and y.
• Triangle Inequality: dp(x,z)≤ dp(x,y)+dp(y,z), for any triple x, y, and z

For the 7-adic system, the triangle inequality, a cornerstone of metric spaces, reads:

|x− z|7 ≤ max(|x− y|7, |y− z|7).

Consider the 7-adic distances between 35, 28, and 7:
1. between 35 and 28 is |35−28|7 = |7|7 = 7−1.

132 Chapter 6. Cyclicality

2. between 28 and 7 is |28−7|7 = |21|7 = 7−1.
3. between 35 and 7 is |35−7|7 = |28|7 = 7−1.

We confirm adherence to the triangle inequality by substituting the calculated 7-adic distances:

d7(35,7)≤ d7(35,28)+d7(28,7),

7−1 ≤ 7−1 +7−1,

≤ max(7−1,7−1) = 7−1.

We can picture equivalent distances on for binary/dyadic and 7-adic space by drawing on a polar
spiral: The code snippet provided generates a visualization of p-adic distances between a set of

Figure 6.1: 2-adic and 7-adic equal lengths.

numbers plotted on a polar coordinate system. The essential features of the code are:
• The number of points n is defined, representing the total numbers to visualize.
• The golden angle in radians is used to distribute the points aesthetically around the polar plot.
• The radial coordinates are determined using a square root scale for better visibility and

distribution of points.
• A function padic_distance is defined to calculate the p-adic distance between any two

numbers x and y, based on divisibility by powers of a prime p.
• For accurate placement of labels at the midpoint of the lines connecting points, polar coordi-

nates are converted to Cartesian coordinates, the midpoint is calculated, and then converted
back to polar coordinates.

• The plot is initialized using matplotlib’s polar projection, with customized aesthetics such as
the removal of axis labels and the inclusion of the grid.

• Lines are drawn to connect points representing p-adic distances, with labels indicating
the distances placed at their midpoints. Labels are only displayed for distances less than
p−min_power, based on the user-specified minimum power threshold.

• Each point is represented by a red dot, and its decimal number is labeled in white text.
• The plot is titled with information about the p-adic distances being shown, and the threshold

for displaying labels.
For example, the code can be used to display the 3-adic distances between the first 81 numbers,

showing only those distances less than 3−2.

6.1 Arithmetic and Metric of p−adic Numbers 133

Arithmetic in p-adic Numbers
The p-adic numbers are constructed by considering all possible infinite series of the form:

a =
∞

∑
n=k

an pn,

where k can be any integer (positive, negative, or zero), an are digits from 0 to p−1, and p is a prime
number. This expansion allows for operations such as addition, subtraction, and multiplication to be
defined in a manner consistent with the usual arithmetic operations but based on p-adic expansions.

134 Chapter 6. Cyclicality

6.2 Cyclicality of the Reptend Primes
Definition 16 Reptend Prime is a prime number p for which the decimal expansion of 1

p has a
repeating cycle of maximum length p−1. This means the repeating decimal part of 1

p is p−1
digits long and under 100 comprise: 7,17,19,23,29,47,59,61,97.

Definition 17 Cycle Number is a number in which cyclic permutations of its digits form
successive multiples of the number.

The repeating decimal cycle of 1
7 is of length 6 = 7− 1 since the order of 10 modulo 7 is 6,

(106 ≡ 1 mod 7), and no smaller power of 10 satisfies this. For 1
7 , the cyclic nature of its decimal

expansion (’142857’) is such that a permutation of this sequence is a multiple of the original number:

1× 1
7
= 0.142857142857 . . .

2× 1
7
= 0.285714285714 . . .

3× 1
7
= 0.428571428571 . . .

...

6× 1
7
= 0.857142857142 . . .

140000000000000000000000

002800000000000000000000

000056000000000000000000

000001120000000000000000

000000022400000000000000

000000000448000000000000

000000000008960000000000

000000000000179200000000

000000000000003584000000

000000000000000071680000

000000000000000001433600

000000000000000000028672

Each line on the left represents a cyclic permutation of ’142857’. On the right we double 2×7 and
continue doubling before adding together in a staggered fashion, to arrive at a sequence where each
digit is a cyclic permutation of the previous one and whose final is 142857142857142857142272.
Below is the code snippet from reptandCycleGenerator.ipynb to generate the staggered sum:

def generate_and_sum_numbers_for_cyclic_number_1_over_p(p):
sequence = [2 * p * 2**i for i in range(12)]
number_list = []
cumulative_shift = 0
for i, num in enumerate(sequence):

d_current = len(str(num)) # Number of digits in the current number
d_previous = len(str(sequence[i-1])) if i > 0 else 0
if i > 0:

cumulative_shift += 2 - (d_current - d_previous)
prefill_zeros = ’0’ * cumulative_shift
filled_number = prefill_zeros + str(num)
number_list.append(filled_number)

max_length = max(len(num) for num in number_list)
padded_numbers = [num.ljust(max_length, ’0’) for num in number_list]

Generating the cyclic number for 1
7 by doubling and applying a staggered summation is tied to the

modular arithmetic properties of 7. The reader is invited to see if other primes can be similarly
generated.

https://colab.research.google.com/drive/18rG47BfvGq-YidIqh8ARWKpVuhVuvKck?usp=sharing

6.2 Cyclicality of the Reptend Primes 135

6.2.1 Remainders of Powers of Ten by 7
Consider the remainders of the powers of ten, 10n when divided by 7 for n = 1 to 7:

100 mod 7 = 1

101 mod 7 = 3

102 mod 7 = 2

103 mod 7 = 6

104 mod 7 = 4

105 mod 7 = 5

106 mod 7 = 1

107 mod 7 = 3
...

Noting that 107 mod 7 = 101 mod 7, we have that 107 −101 is divisible by 7. Consequently, we
can assert that 10(106 −1) is divisible by 7. Similarly we can say that 106 −100 = 106 −1 must be
divisible by 7 and is in fact:

106 −1
7

= 142857

as:

142857
106

[
1+

1
106 +

1
1012 + . . .

]
=

142857
106(1− 1

106)
=

142857
106 −1

=
142857
999999

=
1
7

using the formula for an infinite geometric sum, S = a
1−r for first term a and common ratio r.

6.2.2 Reptend Primes in Base-2
Similarly consider now the remainders of 2n when divided by 7 for increasing values of n:

21 mod 7 = 2

22 mod 7 = 4

23 mod 7 = 1

24 mod 7 = 2

25 mod 7 = 4

26 mod 7 = 1
...

Observing that after 23 mod 7 = 1, the remainders start repeating every 3 powers, as 23 −20 = 7
is obviously divisible by 7. For powers of 2, the cycle repeats every 3 exponents inferring that:

1
7
= (0.001)2

Thus for reptend primes, the binary representation of their reciprocals gives rise to repeating patterns.
Each of these binary representations is a repeating cycle with a period that corresponds to the length
of the reptend prime’s cycle in binary. While the reptend prime concept relates to the cyclical
behavior of the reciprocals of prime numbers in a decimal system, (where the length of the repeating
cycle is maximized) a base-2 exploration is delivered by the code, polarReptendPrimesGolden.ipynb
with function is_primitive_root checking whether the number 2 is a primitive root of a given
prime number, generating two sets and returning True if these sets are equal:

1. required_set contains all integers from 1 to prime - 1.
2. actual_set generated by computing 2powers mod p for each powers from 1 to p- 1.

def is_primitive_root(prime):
required_set = set(num for num in range(1, prime))
actual_set = set(pow(2, powers, prime) for powers in range(1, prime))
return required_set == actual_set

https://colab.research.google.com/drive/1TpL8dF0NMGCGgOM4p9S9sGO2iLcWh2fM?usp=sharing

136 Chapter 6. Cyclicality

Figure 6.2: Reptend primes amongst their madding throng.

The full_cycle_period function checks if a given number is prime using isprime and then
determines if 2 is its primitive root by calling is_primitive_root.

def full_cycle_period(prime):
if not isprime(prime):

return False
return is_primitive_root(prime)

n = 10000
primes = list(primerange(1, n+1))
reptend_primes = [p for p in primes if full_cycle_period(p)]

theta = np.arange(n) * golden_angle_rad
radii = np.log(np.arange(1, n + 1))

Primes up to n = 10000 are generated using primerange and reptend primes are identified among
these by checking which ones have a full cycle period. The golden angle is used to calculate the θ

values, and logarithmic radii are computed to achieve a better distribution of points.

We will see that this binary representation offers a clearer visualization of the cyclical patterns
inherent to reptend primes. We will do this in the following by formalising our previous discussion
of ’magic’ cyclical numbers in the language of deterministic chaos. In particular in the stably
chaotic randomness of applying a shift operator to the reciprocal of reptend nmubers.

6.2 Cyclicality of the Reptend Primes 137

Discovering distribution of Cycle Lengths of Primes
For a given prime p, the length of the repeating cycle is p−1 digits if p is a full reptend prime.
The sequence of digits that repeats in the decimal representation of 1

p is known as the reptend. The
cyclicality of a reptend prime is equal to the order of 10 modulo the prime number so for 19, 1

19 has
a decimal representation whose cycle length is 18 and reptend number is 52631578947368421.

The Python logDirectReptandPrimeListingCycles.ipynb, determines cycle type classification
from the cycle length as the ratio p−1

cycle length . If the cycle length is 0 (for primes like 2 and 5 that
do not have repeating decimals), the cycle type is labeled as ’Other’. A DataFrame is generated
to tabulate the primes, their cycle lengths, the inferred cycle types, and the repeating cycles and
sample from the table is provided below.

Prime Cycle Length Cycle Type Reptend number

2 0 - 0

3 1 2 3

5 0 - 0

7 6 1 142857

11 2 5 09

13 6 2 076923

17 16 1 0588235294117647

19 18 1 052631578947368421
...

...
...

...

9973 554 18 . . .

Table 6.1: Cycle Lengths and Types of Primes

The code calculates the cycle length of the reciprocal of a prime number by defining two functions:
find_cycle_period and get_repeating_cycle.

• find_cycle_period determines the length of the repeating cycle in the decimal representa-
tion of 1

p . It does so by iterating through multiples of 10 and checking when the remainder
repeats, which indicates the start of a new cycle.

• get_repeating_cycle retrieves the actual digits that make up the repeating cycle of 1
p .

def find_cycle_period(prime):
remainder = 1
seen_remainders = {}
position = 0
while True:

remainder = (remainder % prime) * 10
position += 1
if remainder == 0:

return 0 # No repeating cycle for this prime.
if remainder in seen_remainders:

return position - seen_remainders[remainder]
seen_remainders[remainder] = position

https://colab.research.google.com/drive/1fHS8PCO8HBnLcrGgTGItAmrm9Rk_WR9Q?usp=sharing

138 Chapter 6. Cyclicality

The function find_cycle_period is designed to determine the period of the repeating decimal
cycle (cyclicality) of the reciprocal of a given prime number:

• The function initializes a variable called remainder with the value 1, representing the initial
numerator for the division by the prime number.

• An empty dictionary, seen_remainders, is created to keep track of remainders that have
already been encountered during the division process.

• The variable position is set to 0 and serves as a counter for the number of decimal places
processed.

• The function enters an infinite loop, within which the following steps occur:
1. The remainder is updated by taking the current remainder modulo the prime number

and multiplying the result by 10. This operation mimics long division, shifting the
decimal point one place to the right.

2. The position counter is incremented to indicate that we have moved one decimal
place further in the division process.

3. If the remainder becomes 0, the function returns 0, indicating that there is no repeating
decimal cycle for this prime (the reciprocal is a terminating decimal).

4. If the current remainder has been seen before (it exists in the seen_remainders
dictionary), the function calculates the length of the cycle by subtracting the position
where this remainder was first seen from the current position. This value is then returned
as the cycle period.

5. If the remainder is new (not in seen_remainders), it is added to the dictionary with
its corresponding position.

• This process continues until a repeating remainder is found, or until a remainder of 0 is
reached.

Figure 6.3: Reptend Number cycle length for primes up to 10000.

logAndlinCycleLengthvsPrimeByCycleType.ipynb delivers the scatter plot overleaf, where
lines representing cycle 1 are steeper compared to cycles 2, 3, and 4, which relates to the distribution
of repeating cycles within the decimal expansions of reciprocals of prime numbers.

https://colab.research.google.com/drive/18zDH3wnhd5LuTl9I34VTmC8OGXpoOovl?usp=sharing

6.2 Cyclicality of the Reptend Primes 139

Figure 6.4: Reptend Number cycle length for primes up to 10000.

• Direct Proportionality: The cycle length is directly proportional to the prime p for cycle 1
primes, as full reptend primes have a repeating decimal cycle length of p−1. This results in
a steeper line for cycle 1 as p increases.

• Cycle Definitions: The definitions of cycle types are based on the division of p− 1 by
integers 2, 3, 4, etc. Hence, the cycle length for a given prime p decreases as the cycle type
number increases, leading to less steep lines for higher cycle types.

• Prime Number Theorem: The theorem suggests that primes become less frequent as
numbers get larger, affecting the absolute increase in cycle length for each type. Thus, higher
cycle types exhibit increasingly shallow slopes.

• Modular Arithmetic: The cycle type corresponds to the order of 10 modulo p. For cycle 1,
the order is p−1, showing the full scope of modular arithmetic. For cycles 2 and beyond,
the orders are factors of p−1, resulting in a shorter repeating decimal cycle.

• Number Density: The number of primes that show these cycle properties decreases for
higher cycle types, which is reflected in the sparser distribution of points on the plot for
cycles 2, 3, and 4.

if not subset.empty:
X = subset[’Prime’].values.reshape(-1, 1)
y = subset[’Cycle Length’].values
reg = LinearRegression(fit_intercept=False)
reg.fit(X, y)
X_fit = np.linspace(X.min(), X.max(), 100).reshape(-1, 1)
y_fit = reg.predict(X_fit)
ax.plot(X_fit, y_fit, linestyle=’--’, color=colors(cycle_type - 1),

label=f’Cycle {cycle_type} Best Fit: $y = {reg.coef_[0]:.2f}x$’)

The study of reptend primes in base 10, characterized by their maximal-length repeating cycles in
the decimal representation of fractions 1/p for prime p, serves as a precursor to analyzing lesser
known phenomena in any base and in particular binary.

140 Chapter 6. Cyclicality

6.3 Binary representations of Rationals

The number 5 can represented as 510 = 1 ·22 +0 ·21 +1 ·20, corresponding to the binary string 101
while 3 is represented as 310 = 0 ·22 +1 ·21 +1 ·20 = 0112.

Definition 18 Binary representation of every integer k between 0 and 2n − 1 is the unique
representation in binary form of k as

k = bn−1 ·2n−1 +bn−2 ·2n−2 + . . .+b1 ·21 +b0 ·20,

where bn−1, . . . ,b0 are bits that can either be 0 or 1.

This is modelled in the bifurcation tree below, in which each level of the tree corresponds to a
binary digit (bi) in the binary representation of a number.

Figure 6.5: Bifuricating probability tree

Starting from the root of the tree, moving left or right represents choosing a 1 (right) or 0 (left)
for the corresponding binary digit. As such, each path from the root to a leaf represents a unique
binary number, with the leaf nodes representing the binary strings from 0 (bottom) to 2n −1 (top).
The code, bifuricatingTree.ipynb generates a bifurcation tree, which is used to visualize binary
decision processes. The tree is drawn by calling draw_path with the starting coordinates and an
empty path.

def draw_path(x_start , y_start , level , path =""):
if level == levels:

number = f’{int(path , 2):02d}: {path}’ # Padded number if single digit
ax.text(x_start + 0.2, y_start , number , fontsize=9, ha=’left ’, va=’center ’)
ax.text(x_start , y_start , path[-1], fontsize=9, ha=’center ’, va=’center ’,

↪→ backgroundcolor=’white ’)
return

ax.plot([x_start , x_start + 1], [y_start , y_start + 2**(levels -level -1)], ’b-’)
ax.plot([x_start , x_start + 1], [y_start , y_start - 2**(levels -level -1)], ’r-’)
if level > 0: # Ensure we don ’t place a label at the starting point

label = ’1’ if path[-1] == ’1’ else ’0’
ax.text(x_start , y_start , label , fontsize=9, ha=’center ’, va=’center ’,

↪→ backgroundcolor=’white ’)
draw_path(x_start + 1, y_start + 2**(levels -level -1), level + 1, path + "1")
draw_path(x_start + 1, y_start - 2**(levels -level -1), level + 1, path + "0")

draw_path(0, 0, 0, "") # Adjusted starting point on the y-axis

ax.axis(’off ’)

• the recursive function, draw_path, is defined within the main plot_adjusted_bifurcation_tree
function to draw individual paths of the bifurcation tree. At each fork in the path:

– A blue line represents a ’Heads’ decision, or binary ’1’.
– A red line represents a ’Tails’ decision, or binary ’0’.

https://colab.research.google.com/drive/1LXatNkKJWNDE9RD-bCSVOSYmmNWx8RMa?usp=sharing

6.3 Binary representations of Rationals 141

• Labels are added at each fork to indicate the binary decision made at that point. If the path
chooses ’Heads’, a ’1’ is displayed; if ’Tails’, a ’0’.

• At the final level, the binary representation of the path is displayed alongside its decimal
equivalent, which is padded to ensure a consistent format.

• The axes are hidden to focus attention on the bifurcation tree itself.
• plt.tight_layout function is used to adjust the layout, preventing any potential clipping

of the tree’s branches.
We touch on this concept by formalizing our previous discussion of ’magical’ cyclical numbers, by
focusing on the stably chaotic randomness engendered by the application of the shift operator to
the reciprocals of reptend numbers. As such we are more interested here in considering the prime
reciprocals of k

1
5
= 0.0011 =

1
23 +

1
24 +

1
27 +

1
28 + · · ·

1
11

= 0.000101110100 =
1
24 +

1
27 +

1
28 +

1
29 + · · ·

1
13

= 0.000111000010 =
1
24 +

1
25 +

1
26 +

1
212 + · · ·

The probabilityTree.ipynb below serves as a graphical calculator for the binary decimals of fractions,
with each blue upward branch revealing an additional ’1’ bit in the binary sequence.

Each path from the root of the tree to a leaf can be seen as a sequence of decisions, with each
decision corresponding to a digit in the binary fraction. Here’s how to interpret the tree:

• The root node represents the whole number part of the fraction. For fractions between 0 and
1, this is always 0.

• Each level of the tree after the root represents a binary digit after the decimal point with first
level corresponding to 1

2 , or 0.5, second level to 1
4 , or 0.25, and so forth.

• At each level, taking a left branch, colored in red, signifies adding a ’0’ to the binary fraction,
whereas taking a right branch, colored in blue, signifies adding a ’1’.

• The probability associated with each branch is 1
2 akin to the outcome of a coin toss.

• To represent a fraction like 1
3 with a binary expansion of 0.0101 . . ., one would follow a path

of alternating left and right branches, starting with a left branch for ’0’, then a right branch
for ’0.01’, followed by another left for ’0.010’, and so on, ad infinitum.

https://colab.research.google.com/drive/1F03QIC0RZwioJqvhHFBc9bQ8m0XvR0w0?usp=sharing

142 Chapter 6. Cyclicality

6.4 Sum of
(1

2

)2n

Following Hamkins, [6], consider the sum from n to infinity of
(1

2

)2n,

∞

∑
n=0

(
1
2

)2n

=

(
1
2

)0

+

(
1
2

)2

+

(
1
2

)4

+

(
1
2

)6

+ . . .= 1+
1
4
+

1
16

+
1
64

+ . . .=
4
3

As a geometric series with first term a = 1 and common ratio r =
(1

2

)2
= 1

4 and sum S of an infinite
geometric series given by: S = a

1−r we see in this case that:
S = 1

1− 1
4
= 1

3
4
= 4

3 . The sum of the series as n tends to infinity is 4
3 is suggested by the

convergence of the partial sums.

n = 0 :
(

1
2

)0

=
1
1

n = 1 :
(

1
2

)0

+

(
1
2

)2

=
1
1
+

1
4
=

4+1
4

=
5
4

n = 2 :
(

1
2

)0

+

(
1
2

)2

+

(
1
2

)4

=
1
1
+

1
4
+

1
16

=
16+4+1

16
=

21
16

n = 3 :
(

1
2

)0

+

(
1
2

)2

+

(
1
2

)4

+

(
1
2

)6

=
1
1
+

1
4
+

1
16

+
1
64

=
64+16+4+1

64
=

85
64

n = 4 :
(

1
2

)0

+

(
1
2

)2

+

(
1
2

)4

+

(
1
2

)6

+

(
1
2

)8

=
1
1
+

1
4
+

1
16

+
1
64

+
1

256
=

341
256

n = 5 :
(

1
2

)0

+

(
1
2

)2

+

(
1
2

)4

+

(
1
2

)6

+

(
1
2

)8

+

(
1
2

)10

=
1
1
+

1
4
+

1
16

+
1
64

+
1

256
+

1
1024

=
1365
1024

This suggests the following rather more satisfying visual proof.

Figure 6.6: A visual suggestion of the infinite sum
(1

2

)2n
= 3/4

The first large square of the image represents 1, subsequent colored smaller squares represent
1
4 ,

1
16 ,

1
64 , ... The total area of the colored squares equals 4/3, which is the sum of the infinite series.

6.5 Orbits of n-cycles 143

The code to write it has the following noteworthy features:

def draw_squares(ax, x, y, size, depth, colors_iter):
if depth == 0 or not colors_iter:

return
half_size = size / 2
ax.add_patch(patches.Rectangle((x, y + half_size), half_size, half_size,

... facecolor=’lightgrey’, edgecolor=’black’, linewidth=0.5))
ax.add_patch(patches.Rectangle((x + half_size, y + half_size), half_size, half_size,

... facecolor=’white’, edgecolor=’black’, linewidth=0.5))
color = next(colors_iter, None)
if color:

ax.add_patch(patches.Rectangle((x, y), half_size, half_size, facecolor=color,
edgecolor=’black’, linewidth=0.5))

ax.add_patch(patches.Rectangle((x + half_size, y),...
draw_squares(ax, x + half_size, y + half_size, half_size, depth-1, colors_iter)

Here the draw_squares function is defined with parameters: the axes (ax), coordinates (x, y),
size, depth, and colors_iter with main features:

• Termination Condition:
– The function halts if depth equals 0 or if colors_iter is exhausted.

• Half Size Calculation:
– Computes half of the size, termed as half_size.

• Upper Left/Right Square:
– A light/white grey square is drawn in the upper left/right section, framed with a black

border.
• Lower Left Square (Conditional):

– A square, colored based on the colors_iter, is crafted in the lower left section if a
color is available, encircled with a black border.

• Recursion:
– The function recursively invokes itself, focusing on the upper right (white) square for

further subdivisions.

6.5 Orbits of n-cycles

As we have seen reptend primes, pr, are characterised by their reciprocals in base-10 having
reptend lengths of p−1 giving rise to what we might term “magical numbers” due to their cycli-
cal decimal expansions. So for instance, the decimal representation of 1

7 is 0.142857, and the
multiples of 142857 within the range of 1 to 6 generate cyclic permutations of this sequence,
so that 6× 142857 = 857142. These cycles are more elegantly revealed in a number’s (binary)
representation, through the application of a shift map S(x) = 2x mod 1, where the initial value
(or “seed”) undergoes successive doublings and modular reductions. This process translates the
cyclicality of reptend primes into a binary orbit. While a random process by definition cannot be
deterministic, the quirk we observe is the counter-intuitive cornerstone of deterministic chaos that a
deterministic process can exhibit behavior indistinguishable from randomness.

Formally, a n-cycle is a system defined as a set of n distinct states {x1,x2, ...,xn} such that
S(xi) = x(i mod n)+1, with xn+1 ≡ x1. It is both deterministic, as the successor of each state is
uniquely defined, and chaotic, as the resulting orbit—though finite and repeating—shares prop-
erties with sequences generated by random processes, such as a lack of discernible pattern to

https://colab.research.google.com/drive/1bWSvuEipRyxDa5tTHbt0Ti_Cjm3bSwEa?usp=sharing

144 Chapter 6. Cyclicality

an uninformed observer. The reciprocals of reptend primes, when expressed in binary, reveal a
structured yet complex dynamical behavior through the application of the shift map S(x) = 2x
mod 1 underscoring the deterministic yet chaotic behavior of their binary expansions under the
shift map.

6.5.1 shift Map
The shift map S(x) = 2x mod 1 acts on a binary fraction, say x = 0.010011 by doubling x and
taking the fractional part of the result.

This action can be visualized as a series of nested squares where each square represents a
binary digit (bit) in the binary expansion of x. The unit square is recursively divided into four equal
parts (quadrants), and the top right quadrant is subdivided at each step, with the depth of recursion
corresponding to the precision of the binary representation. The outer square represents the unit
interval [0,1], and each subsequent inner square represents the fractional part after the shift map is
applied. The squares get recursively smaller, symbolizing the binary digits shifting to the left.

Figure 6.7: Action of the Shift map

The depth of recursion and shading in the code, recursiveSquares.ipynb corresponds to the precision
and the binary digits of the fraction being represented:

• The initial seed x0 = 0.101 is represented by a unit square.
• After applying the shift map, the seed becomes x1 = S(x0) = 0.01 (discarding the overflow),

visualized by quartering the unit square and focusing on the top right quadrant.
• This continues recursively, with the depth of recursion indicating the number of binary digits

considered and each iteration representing a binary shift operation.

https://colab.research.google.com/drive/1OCfwVbj6h-4WkIA1WBvmJ70KoGacwt29?usp=sharing

6.5 Orbits of n-cycles 145

6.5.2 Spider diagrams of n-cycle orbits

The shift map, denoted as S(x) = 2x mod 1, applied to the reciprocal of a reptend prime in binary
representation, creates orbits or n-cycle sequences in which the shift map returns to the initial value
after n applications:

• 1-cycle (x[1]): The binary representation 0.1 = 1 represents a fixed point or a 1-cycle under
the shift map, since applying S(x) to 1 gives 0 modulo 1, which effectively maps back to 1,
thus forming a 1-cycle orbit denoted as O[1] = {1}.

• 2-cycle (x[2]): The binary representation 0.01 = 1
3 alternates between two values under the

shift map, representing a 2-cycle orbit. Applying S(x) yields:

O[2] =

{
1
3
,
2
3

}
,

where each subsequent application alternates between these two values so we have:

x0 =
1
3
= 0.0101010101...

S(x0) =
2
3
= 0.1010101010...= x1

S(x1) =
1
3
= 0.0101010101...= x0

• 3-cycles: There are two examples of 3-cycles with their respective orbits:
– The binary representation 0.001 = 1

7 produces the orbit:

O[3]
1 =

{
1
7
,
2
7
,
4
7

}
.

– The binary representation 0.011 = 3
7 results in the orbit:

O[3]
2 =

{
3
7
,
6
7
,
5
7

}
.

These 3-cycles show that the shift map produces three distinct values before repeating,
illustrating the cyclical nature of the map when applied to these seeds.

In the case of reptend primes, the length of the cycle in the binary representation of their reciprocals
is maximal, equating to the prime minus one. This property allows for a rich structure of orbits,
with each reptend prime generating an n-cycle that displays its unique characteristics in both its
numerical and binary form under the shift map dynamics.

The code, ShiftOperatorOrbitsReptend.ipynb creates the following

https://colab.research.google.com/drive/10EW0H0GbLyELtmFUHGlyxbDozBS2_FZn?usp=sharing

146 Chapter 6. Cyclicality

Figure 6.8: Orbits for reptend primes,pr = 5,11,13,163

This is all to say that while a random process cannot be deterministic a entirely deterministic
process (as it happens) can (at least) appear be totally random. The code reptendFinder.ipynb
identifies those primes giving rising to maximal periods.

R Consider how the notion of reptend is linked to the underlying base (decimal) representation
of a number. What does binary representation to a number’s cyclicality?

https://colab.research.google.com/drive/1GfF2txBgjEHq1hV5LsjddQLkP0OJxHl5?usp=sharing

6.6 Primitive Roots and Base-b Reptend Primes 147

6.6 Primitive Roots and Base-b Reptend Primes

A primitive root modulo n is a number that, when raised to successive powers, generates all the
integers from 1 up to n−1, inclusive, exactly once when considered modulo n and is a cornerstone
concept of cyclic groups in cryptography.

Definition 19 primitive root modulo n is a number g which if for every integer a such that
1 ≤ a < n and a is coprime to n (i.e., gcd(a,n) = 1), there exists an integer k such that gk ≡ a
mod n.

The smallest positive integer k for which gk ≡ 1 mod n equals φ(n), where φ denotes Euler’s
totient function. For a prime p, we have φ(p) = p−1, indicating that a primitive root g modulo a
prime p must satisfy gk ≡ 1 mod p only when k = p−1, covering all integers from 1 to p−1 as k
ranges from 1 to p−1. So When we say "2 is a primitive root modulo 17", it implies that the powers
of 2, taken modulo 17, generate all the integers from 1 to 16 in some order, without repetition,
before the sequence repeats. The code, primitiveRootsModulo.ipynb checks each number n up to
some number m−1 to determine if it is a primitive root modulo m.

def check_primitive_root(modulus, n):
residues = set()
for k in range(1, modulus):

residue = pow(n, k, modulus)
print(f"{n}^{k} mod {modulus} = {residue}")
residues.add(residue)

return len(residues) == modulus - 1
modulus = 11
primitive_roots = []

for n in range(1, modulus):
print(f"Checking if {n} is a primitive root modulo {modulus}:")
if check_primitive_root(modulus, n):

primitive_roots.append(n)

print(f"Primitive roots modulo {modulus}: {primitive_roots}")

For m = 11 the code calculates nk mod 11 for each k from 1 to 10, tracking residues to ensure
uniqueness. Upon completing the loop for a given n, it verifies if the collection of residues matches
m−1, indicating a full cycle and, consequently, that n is a primitive root modulo 11.
21 mod 11 = 2
22 mod 11 = 4
23 mod 11 = 8
24 mod 11 = 5
25 mod 11 = 10
26 mod 11 = 9
27 mod 11 = 7
28 mod 11 = 3
29 mod 11 = 6
210 mod 11 = 1
2 is a primitive root modulo 11.

31 mod 11 = 3
32 mod 11 = 9
33 mod 11 = 5
34 mod 11 = 4
35 mod 11 = 1
36 mod 11 = 3
37 mod 11 = 9
38 mod 11 = 5
39 mod 11 = 4
310 mod 11 = 1
3 does not generate a full cycle modulo 11.

An examination of the primitive roots modulo n elucidates the cyclic properties of numbers within
modular arithmetic and facilitates our extension to base-b reptend primes by understanding the
maximal repeating cycles of 1/p in any chosen base b. .

https://colab.research.google.com/drive/1A4QyIYGrhVHhJNaerV4VTs2p40vhEx2B?usp=sharing

148 Chapter 6. Cyclicality

6.7 Bakers Folding Interleaving Chaotic Map
The Baker’s map, [3] is a chaotic map that is an instructive example of a system exhibiting both
chaotic and regular behavior. Imagine a square piece of dough which then compressed in one
direction to half its height, while simultaneously being stretched in the perpendicular direction
to double its length, keeping the area constant. The resulting rectangular shape is then cut in
half, and the right half is placed on top of the left half, restoring the original square shape. This
process is then repeated. Formally, the Baker’s map is defined on the unit square [0,1]× [0,1] and
it transforms a point (x,y) within this square as follows:

B(x,y) =

{
(2x, y

2) if 0 ≤ x ≤ 0.5,
(2x−1, y+1

2) if 0.5 < x ≤ 1.
(6.1)

This piece-wise definition ensures the area is preserved and the square domain is maintained after
the transformation. This is performed in the snippet of bakerMapOncircleIntersectipynb

def baker_map(x, y):
if x <= 0.5:

return x * 2, y / 2
else:

return (2 * x - 1), (y + 1) / 2

which delivers the following set of plots.

Figure 6.9: Baker stretch-compress-cut-add-Map

Each iteration is visualized in a series of subplots, showing a progression from order to chaos:
• Intersection Calculation: The initial set of points is determined by the intersection of lines

of the form y = mx+m with a unit circle inscribed in a unit square.

intersection_points = [baker_map(x, y) for x, y in intersection_points]

• Iterative Application: The map is applied iteratively, with each iteration representing one
folding cycle resulting in points becoming increasingly scattered, demonstrating the map’s
mixing property.

https://colab.research.google.com/drive/1uy14MJyC9C2nBsuEpnGp_QLXr0lta8eT?usp=sharing

6.8 Benford’s Law 149

6.8 Benford’s Law

Benford’s Law, or the First-Digit Law, predicts
that in many naturally occurring collections of
numbers, the leading digit is more likely to be
small digit. The probability P(n) of the first digit
of a number being n is given by the logarithmic
distribution:

P(n) = log10

(
n+1

n

)
The table to the right lists the probabilities P(n)
for each first digit n from 1 to 9 according to
Benford’s Law.

First Digit n Probability P(n)

1 30.1%

2 17.6%

3 12.5%

4 9.7%

5 7.9%

6 6.7%

7 5.8%

8 5.1%

9 4.6%

Benford’s Law has practical applications in fields such as forensic accounting and fraud detection,
where deviations from this distribution can indicate anomalies or fabricated data. We note for
instance that an account with a 1% annual interest rate compounded monthly, the time to double,
triple etc the account balance over time follows the law.

Multiplier Time taken to @ 1.0% Time between @ 1.0% Probability

Double 70 70 30.17%

Triple 111 41 17.67%

Quadruple 140 29 12.50%

Quintruple 162 22 9.48%

Six x 181 19 8.19%

Seven x 196 15 6.47%

Eight x 209 13 5.60%

Nine x 221 12 5.17%

Ten x 232 11 4.74%

Benford’s empirical rule reflects nature counting geometrically rather than arithmetically despite our
aversion to logarithms even as our senses are tuned to the environment’s power laws. We explore
this geometric nature directly by looking at the series 20,21,22, ..2n and its scaled versions by
deploying benfordGeometricSeries.ipynb which performs the first digit extraction in the function:

from collections import defaultdict
def first_digit_frequencies(multiplier, power_range):
frequencies = defaultdict(int)
for power in range(power_range):

number = multiplier * (2 ** power)
digit = first_digit(number)
frequencies[digit] += 1

return frequencies

https://colab.research.google.com/drive/1cFvB0ZmlX0sX0tBAc4O8iFfiFemctnwX?usp=sharing

150 Chapter 6. Cyclicality

delivers the set of histograms for the power 2 series law, B as well as those scaled by factors of
2,3,5,7

Figure 6.10: Benford behaviour of 2n and its scaled versions

Mersennes Prime: also follow the Law as the BenfordMersennes.ipynb bears out. The essential
elements of the code are a function to retrieve the first digit of a number and a calculation of the
observed frequencies

def first_digit(n):
return int(str(n)[0])

observed_frequencies = [0] * 9 # For digits 1 through 9
for prime in mersenne_primes:

digit = first_digit(prime)
observed_frequencies[digit - 1] += 1

Fibonacci Numbers: despite its deterministic nature, also exhibits leading digits in its numbers
that follow the Law. fibonacciBenford.ipynb delivers the sequence to strip down with snippet

def fibonacci_sequence(n):
fib_sequence = [1, 1]
while len(fib_sequence) < n:

fib_sequence.append(fib_sequence[-1] + fib_sequence[-2])
return fib_sequence

Below are the Histograms of first number frequencies with a comparative Benford distribution.

Figure 6.11: Mersenne’s Primes and Fibonacci sequences following Benford’s Law.

https://colab.research.google.com/drive/1tf553P1xvO1Cl3amO_Vs0X7zWwB7KmVv?usp=sharing
https://colab.research.google.com/drive/1HetK7mH42pNnPyZc-Z0gQymhRqWX2-F3?usp=sharing

6.8 Benford’s Law 151

For Fibonacci n=100, Chi-sq = 1.05, P-value = 0.9979, while for n=1000 Chi-sq = 0.20, P-value
= 1.0000.

Conclusion: For all the tested figurative number series, the Chi-squared values are below the
critical value of 15.51 for 8 degrees of freedom at a significance level of 0.05, and the p-values are
above 0.05. Therefore, we do not reject the null hypothesis for either of the sequences, concluding
that the distribution of first digits in these number series does not show significant deviation from
Benford’s Law.

Figurative Number Sequences
To test the geometric nature of abeyance to Benford we explore the quadratic series of various
figurative number sequences (Triangle, Square, Pyramid, Cubic, and Pentagon):

def triangle_numbers(n):
return [i * (i + 1) // 2 for i in range(1, n + 1)]

def square_numbers(n):
return [i ** 2 for i in range(1, n + 1)]

def pyramid_numbers(n):
return [i * (i + 1) * (2 * i + 1) // 6 for i in range(1, n + 1)]

def cubic_numbers(n):
return [i ** 3 for i in range(1, n + 1)]

def pentagon_numbers(n):
return [i * (3 * i - 1) // 2 for i in range(1, n + 1)]

In order to explicitly determine deviation from the Benford distribution we apply a Chi-squared test
to the distribution of their first digits. Accordingly we assume the null hypothesis (H0) that the
distribution follows the law, while the alternative hypothesis (H1) suggests a deviation from it as
implemented in the following code snippet:

for name, frequencies in all_frequencies.items():
observed = [frequencies[digit] for digit in range(1, 10)]
expected = [n * (p / 100) for p in expected_benford]
chi_stat, p_value = chisquare(f_obs=observed, f_exp=expected)
print(f"Sequence {name}: Chi-sq = {chi_stat:.2f}, P-value = {p_value:.4f}")
if chi_stat > critical_value:

print(f" Result for {name}: Reject the hypothesis ...")
else:

print(f" Result for {name}: Do not reject the hypothesis ...")

When n=100 we note the following suggestive results:
• Triangle Numbers: Chi-sq = 11.83, P-value = 0.1589. The Chi-squared value is below the

critical value of 15.51, and the p-value is above 0.05, indicating no significant deviation from
Benford’s Law. Hence, we do not reject H0 for Triangle Numbers.

• Square Numbers: Chi-sq = 9.05, P-value = 0.3380. As the Chi-squared value is below the
critical threshold, and the p-value is well above 0.05, the Square Numbers do not significantly
deviate from Benford’s Law so we do not reject H0 for Square Numbers.

• Pyramid Numbers: Chi-sq = 4.69, P-value = 0.7898. H0 is thus not rejected for Pyramid
Numbers.

• Cubic Numbers: Chi-sq = 3.60, P-value = 0.8910. H0 is not rejected for Cubic Numbers.

152 Chapter 6. Cyclicality

• Pentagon Numbers: Chi-sq = 5.27, P-value = 0.7282. H0 is not rejected.
Upon extending the series to n=1000 we see rejection across the board:

Sequence Chi-sq P-value Result

Triangle 104.70 0.0000 Reject the hypothesis that the distribution follows Benford’s Law.

Square 103.42 0.0000 Reject the hypothesis

Pyramid 32.42 0.0001 Reject the hypothesis

Cubic 46.38 0.0000 Reject the hypothesis

Pentagon 39.51 0.0000 Reject the hypothesis

Table 6.2: Chi-squared Test Results for Various Sequences

Figure 6.12: Benfordian behaviour of the first n=1000 terms of various figurative series

6.9 Aliquot Sequences
Aliquot Sequence: A sequence that begins with any positive integer where each subsequent term
is the sum of the proper divisors of the previous term. A proper divisor is a positive divisor of a
number n other than n itself. This distinction ensures no sequence gets stuck with repeating the
number itself.

1. Terminating Sequence: Ends when it reaches a prime number or 1, as their only proper
divisor is 1.

2. Cyclical Behavior: If a sequence revisits a number, it enters a cycle.
• Perfect Numbers: A cycle of length 1, e.g., 28 (sum of divisors: 1 + 2 + 4 + 7 + 14 =

28).
• Amicable Numbers: A cycle of length 2, e.g., 220 and 284.
• Sociable Numbers: A cycle of length greater than 2. The length of the cycle defines

the sociability of the numbers.
– 3-cycle: 12, 16, 15.
– 4-cycle: 1264460, 1547860, 1727636, 1305184.
– 5-cycle: Example missing in common knowledge till 2021.

• Other lengths (e.g., 26 terminates without cycling back).

7. Polynomial Sequences

Monte Carlo Simulation of Square Vertex sequences

Examining differences to explore polynomial sequences is a well-acknowledged mathematical tool.
A sequence is deemed to follow (be generated by) a polynomial of order n if the n-th differences
are constant.

• First Differences: Constant first differences correspond to linear sequences.
• Second Differences: Constant second differences align with quadratic sequences, portraying

a fixed curve pattern in the sequence of numbers.
• Third Differences: Constant third differences denote cubic sequences, highlighting a three-

dimensional, curved pattern in the sequence of numbers.

The plots provide a novel depiction of the world of arithmetic differences and random numbers.

Figure 7.1: Ten Square Sequences for interval [1,1000].

154 Chapter 7. Polynomial Sequences

Figure 7.2: Ten Square Sequences for interval [1,10000].

Each square in the plots is labelled with numbers randomly drawn from an interval [1, l], where
l is a user-defined limit, ensuring a unique numerical landscape for each square. In the construc-
tion1[4] of these squares by multipleSquare-differenceDrawVertex.ipynb, every vertex is labeled
with a unique number, drawn randomly from the interval [1, l] without replacement. At each
side’s midpoint of the larger square, the absolute difference between the two adjacent vertices
is calculated and displayed. These midpoints subsequently serve as the vertices for an inscribed
square, and the process is recursively repeated until all vertices hold the same number. MonteCarlo-
SquareMidpointVertex.ipynb simulates the construction a thousand times and plots a histogram of
the depth of recursion necessary for mid point vertex differences to settle on a value. Contrary to
expectations, a seemingly systematic procedure does not settle on a fixed number too early. Despite
the pattern of calculating differences (which might suggest a quick convergence to a fixed number),
the randomness infused at each vertex ensures a diverse and unpredictable pathway to uniformity.

(a) drawn from [1,100] (b) drawn from [1,1000]

(c) drawn f rom[1,10000] (d) drawn from [1,100,000]

Figure 7.3: Monte Carlo Simulations showing Depth of recursion required given draws widths

1This construction is taken from "Even More Mathematical Activities", Brian Bolt Cambridge Educational, 1987".

https://colab.research.google.com/drive/1thcqhGiPX4r_7juqJqE-WsZt9J-b5IYi?usp=sharing
https://colab.research.google.com/drive/1Gv9jkQZ4m5YYP4AKJyzOgJhsM1tdN83T?usp=sharing
https://colab.research.google.com/drive/1Gv9jkQZ4m5YYP4AKJyzOgJhsM1tdN83T?usp=sharing

7.1 Worpitsky triangle 155

7.1 Worpitsky triangle
Consider the problem, [15] of counting the total number of squares in a chessboard,

Figure 7.4: How many squares in a 8×8 chessboard.

The correct total number of squares on an 8x8 chessboard, including all sizes of squares from
1x1 to 8x8, is calculated as the sum of the first eight square numbers:

For 1x1 squares: 8×8 = 64

For 2x2 squares: 7×7 = 49

For 3x3 squares: 6×6 = 36

For 4x4 squares: 5×5 = 25

For 5x5 squares: 4×4 = 16

For 6x6 squares: 3×3 = 9

For 7x7 squares: 2×2 = 4

For 8x8 squares: 1×1 = 1

Adding these gives: 64 + 49 + 36 + 25 + 16 + 9 + 4 + 1 = 204. Ponder now how you would
approach answering the natural extension to this problem, of how many cubes are in a 8× 8
Rubik’s cube. Is there a smart way to calculate such a sum? We will outline first a relatively non
standard way and then certainly a more novel way that will enable us to count the hypercubes in
any hyper-Rubik’s cube.

156 Chapter 7. Polynomial Sequences

7.1.1 Sum of 1 j + . . .+n j

One way to proceed -if one did not know any better -would be to derive formula for the sum of
the natural numbers and their higher powers. Let us for completeness do this for p = 1,2,3,4 by
considering the difference between consecutive square numbers i2 − (i−1)2 = 2i−1 and using a
bit of telescoping, while summing these differences from i = 1 to n gives:

n

∑
i=1

(i2 − (i−1)2) =
n

∑
i=1

(2i−1)

The left-hand side telescopes, meaning all terms except the first and the last cancel out:

n2 −02 =
n

∑
i=1

(2i−1) so we are left with: n2 =
n

∑
i=1

(2i−1)

Now, notice that the sum on the right-hand side can be rewritten as:

n

∑
i=1

2i−
n

∑
i=1

1 = 2
n

∑
i=1

i−n and so, we have: n2 = 2
n

∑
i=1

i−n.

We rearrange this to solve for the sum of the first n natural numbers as:

2
n

∑
i=1

i = n2 +n so the first n natural numbers sum as the triangle numbers:
n

∑
i=1

i =
n(n+1)

2

Sum of the square numbers

To derive the formula for the sum of squares, similarly consider rather perversely the sum of cubes
from 13 to n3 and from 03 to (n−1)3:

n

∑
i=1

i3 −
n−1

∑
i=0

i3 =
n

∑
i=1

(
i3 − (i−1)3)

=
n

∑
i=1

(
3i2 −3i+1

)
Noticing that the left-hand side telescopes to n3:

n

∑
i=1

i3 −
n−1

∑
i=0

i3 = n3, we have: n3 =
n

∑
i=1

(
3i2 −3i+1

)
= 3

n

∑
i=1

i2 −3
n

∑
i=1

i+
n

∑
i=1

1

Using our triangle formula for the sum of the first n natural numbers, ∑
n
i=1 i = n(n+1)

2 , we have:

n3 = 3
n

∑
i=1

i2 −3
(

n(n+1)
2

)
+n = 3

n

∑
i=1

i2 − 3n(n+1)
2

+n

Rearranging as 3∑
n
i=1 i2 = n3 + 3n(n+1)

2 −n, means we solve for the sum of squares as:

n

∑
i=1

i2 =
n3 + 3n(n+1)

2 −n
3

=
1
6

n(n+1)(2n+1)

7.1 Worpitsky triangle 157

Sum of higher order numbers

For cubics, we proceed similarly with the sum of quartics from 14 to n4 and from 04 to (n−1)4:

n

∑
i=1

i4 −
n−1

∑
i=0

i4 =
n

∑
i=1

(
i4 − (i−1)4)

=
n

∑
i=1

(
4i3 −6i2 +4i−1.

)
Noticing that the left-hand side telescopes, ∑

n
i=1 i4 −∑

n−1
i=0 i4 = n4 we have

n4 =
n

∑
i=1

(
4i3 −6i2 +4i−1

)
= 4

n

∑
i=1

i3 −6
n

∑
i=1

i2 +4
n

∑
i=1

i−
n

∑
i=1

1.

Using the formulas for the sum of the first n natural numbers and the sum of squares, we get:

n4 = 4
n

∑
i=1

i3 −6
(

n(n+1)(2n+1)
6

)
+4
(

n(n+1)
2

)
−n

= 4
n

∑
i=1

i3 −n(n+1)(2n+1)+2n(n+1)−n.

Rearranging to solve for the sum of cubes:

4
n

∑
i=1

i3 = n4 +n(n+1)(2n+1)−2n(n+1)+n,

n

∑
i=1

i3 =
n4 +n(n+1)(2n+1)−2n(n+1)+n

4
=

n4 +2n3 +n2

4
=

1
4

n2(n+1)2.

We can keep playing this game deriving the sum of quartics, from the shifted sum of quintics from
15 to n5 and from 05 to (n−1)5:

n

∑
i=1

i5 −
n−1

∑
i=0

i5 =
n

∑
i=1

(
i5 − (i−1)5)= n

∑
i=1

(
5i4 −10i3 +10i2 −5i+1

)
,

so that the sum of quartics follows from:

5
n

∑
i=1

i4 = n5 + [terms involving lower powers of i]

For quintics, from the sum of sextics from 16 to n6 and from 06 to (n−1)6 we have:

n

∑
i=1

i6 −
n−1

∑
i=0

i6 =
n

∑
i=1

(
i6 − (i−1)6)= n

∑
i=1

(
6i5 −15i4 +20i3 −15i2 +6i−1

)
,

so the sum of quintics follows from:

6
n

∑
i=1

i5 = n6 + [terms involving lower powers of i]

158 Chapter 7. Polynomial Sequences

7.1.2 The Pyramid number of the Twelve Days of Christmas presents
The classic Christmas song "The 12 Days of Christmas" implies a cumulative gift-giving pattern. If
each day’s gifts are added cumulatively to the total from the previous days, the problem is to find
the total number of presents received over the 12 days.

Gauss is famously known for quickly finding the sum of a series of 1 to 100, If we write
the series 1,2,3, . . . ,n backwards as n,n−1,n−2, . . . ,1, and sum each pair, we get for each pair
n+ 1. For n numbers, there are n pairs each summing to n+ 1 and the total sum of the series
is half the product of the number of pairs or equivalently half the sequence of oblong numbers
1× 2,2× 3,3× 4, . . . ,n× (n+ 1). So our total number of gifts is halve the sum of the first 12
oblong numbers :

1
2

12

∑
n=1

n(n+1) =
12

∑
n=1

n(n+1)
2

i.e. the first 12 triangular numbers, a sum of a quadratic sequence whose general nth term is given
by an = An2 +Bn+C, where A, B, and C are constants and whose sum of the first n terms, Sn is:

Sn =
n

∑
i=1

(Ai2 +Bi+C) (7.1)

= (A+B+C)+(4A+2B+C)+(9A+3B+C)+ . . .+(An2 +Bn+C) (7.2)

For oblong, pryonic numbers, we have A = 1, B = 1, and C = 0 so the nth term is Pn = n2 +n:

Pn =
n

∑
n=1

(n2 +n) =
n

∑
n=1

n2 +
n

∑
n=1

=
n(n+1)(2n+1)

6
+

n(n+1)
2

=
n(n+1)(2n+1)+3n(n+1)

6
=

n(n+1) [(2n+1)+3]
6

=
n(n+1)(n+2)

3

P12 =
12×13×14

3
=

2184
3

= 728,

and 364 presents are delivered over the twelve days of Christmas. Noting the number generators

naturals:
(

n+0
1

)
, triangles:

(
n+1

2

)
=

n(n+1)
2

, pyramids:
(

n+2
3

)
, Pascal’s triangle is:

(n−1
0

) (n+0
1

) (n+1
2

) (n+2
3

)
(1−1

0

)(2−1
0

) (1+0
1

)(3−1
0

) (2+0
1

) (1+1
2

)(4−1
0

) (3+0
1

) (2+1
2

) (1+2
3

)
...

...
...

...

(n−1
0

) (n+0
1

) (n+1
2

) (n+2
3

)
(0

0

)(1
0

) (1
1

)(2
0

) (2
1

) (2
2

)(3
0

) (3
1

) (3
2

) (3
3

)
...

...
...

...
so the sums of the third column (triangle numbers) and fourth column (pyramid numbers) are:

n

∑
k=0

(
n+ k

2

)
and

n

∑
k=0

(
n+ k

3

)
.

We have then as our number of Christmas presents the twelfth pyramid number:(
n+2

3

)
=

(n+2)(n+1)n
3!

(
12+2

3

)
=

(12+2)(12+1)12
6

= 364.

7.1 Worpitsky triangle 159

Pascal’s Triangle of Difference of Powers
We collect the coefficients from the differences of consecutive powers noting how they resemble
those of the binomial expansion2, albeit with alternating signs:

Power Difference Coefficients

i1 − (i−1)1 1i0

i2 − (i−1)2 2i1 −1

i3 − (i−1)3 3i2 −3i+1

i4 − (i−1)4 4i3 −6i2 +4i−1

i5 − (i−1)5 5i4 −10i3 +10i2 −5i+1

i6 − (i−1)6 6i5 −15i4 +20i3 −15i2 +6i−1

i7 − (i−1)7 7i6 −21i5 +35i4 −35i3 +21i2 −7i+1

Recall that the difference of two consecutive squares, from (??) told us 42 − 32 = 2 · 4− 1 = 7
so from the above we can see now how to determine the difference of two consecutive cubes
43 −33 = 3 ·42 −3 ·4+1 = 37. Whereas Pascal’s Triangle comprises rows of numbers formed of
the sums of two numbers above:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

the coefficients in the differences of consecutive powers are formed of a modified Pascal’s triangle
which comprises the differences between the numbers directly above reading from right to left so
that −6−4 =−10 and 4− (−6) = 10 according to:

−1

−1 1

−1 2 −1

−1 3 −3 1

−1 4 −6 4 −1

−1 5 −10 10 −5 1
2To be sure, the binomial expansion of (i− (i−1))n is not quite what we are looking for:

(i− (i−1))n =
n

∑
k=0

(
n
k

)
in−k(−i+1)k

since for n=2 we have (i− (i−1))2 = i2 −2i(i−1)+(i−1)2 = i2 −2i2 +2i+ i2 −2i+1 = 1.

160 Chapter 7. Polynomial Sequences

Powered Pascal Triangle
Consider now the numbers in Worpitzky, "power Pascale" Triangle, that are obtained by multiplying
each of the two numbers directly above by their respective column position before summing them:

11

11 11

11 32 23

11 72 123 64

11 152 503 604 245

11 312 1803 3904 3605 1206
...

...
...

The numbers are thus generated according to 72 + 123 ≡ 7× 2+ 12× 3 = 503. The following
snippet from WorpitskyPascaleTriangleMersennes generates the triangle for any user n

def construct_power_pascal(order):
triangle = [[1]]
for i in range(1, order):

row = [1]
for j in range(1, i+1):

left_above_val = triangle[i-1][j-1] * (j) if j-1 >= 0 else 0
direct_above_val = triangle[i-1][j] * (j+1) if j < len(triangle[i-1]) else 0
value = left_above_val + direct_above_val
row.append(value)

triangle.append(row)
return triangle

We can identify the Mersenne’s primes, 2p−1 along the second left to right diagonal, 3,7,31,127,8191,
131071,524287 on p rows 2,3,5,7,13,17,19 through the snippet:

def compare_to_mersenne_primes(column):
return [val for val in column if is_prime(val)]

Akin to Pascal’s Triangle, in terms of binomial coefficients we will denote Worpitzky thus:

(0
0

)(1
0

) (1
1

)(2
0

) (2
1

) (2
2

)(3
0

) (3
1

) (3
2

) (3
3

)
...

. . .
...

0W 0

1W 0 1W 1

2W 0 2W 1 2W 2

3W 0 3W 1 3W 2 3W 3
...

. . .
...

For any given n, this triangle can be used to represent the sum of the series up to nk for k ∈ N. We
have thus for the cumulative sum up to 1 squares,

12 +22 +32 +42 + . . .+n2 = 2W 0

(
n
1

)
+ 2W 1

(
n
2

)
+ 2W 2

(
n
3

)
.

https://colab.research.google.com/drive/1cPUAwxJxUrxYvrGLVpo7YF25fedesU2v?usp=sharing

7.1 Worpitsky triangle 161

Given a required value of n = 8 for a chessboard, we can use the Worpitsky triangle to compute the
sum of power series up to n = 8 as follows:

10 +20 +30 +40 +50 +60 +70 +80 = 1
(

8
1

)
= 8

11 +21 +31 +41 +51 +61 +71 +81 = 1
(

8
1

)
+1
(

8
2

)
= 8+28 = 36

12 +22 +32 +42 +52 +62 +72 +82 = 1
(

8
1

)
+3
(

8
2

)
+2
(

8
3

)
= 8+84+112 = 204

13 +23 +33 +43 +53 +63 +73 +83 = 1
(

8
1

)
+7
(

8
2

)
+12

(
8
3

)
+6
(

8
4

)
= 8+196+672+420 = 1296

So our Power-Pascal Triangle code for d = 8 up to 4th row: [[1], [1, 1], [1, 3, 2], [1, 7, 12, 6]]
gives us the total number of cubes in an 8×8×8 Rubik’s 3-d cube as 1296. This is achieved in the
snippet below from WorpitsktTriangleSeriesSum.ipynb

def display_sums(triangle, n):
for i, row in enumerate(triangle):

terms = [f"{coef}*{n}^C_{j+1}" for j, coef in enumerate(row)]
sum_terms = [f"{coef * binomial_coeff(n, j+1)}" for j, coef in enumerate(row)]
actual_sum = sum(coef * binomial_coeff(n, j+1) for j, coef in enumerate(row))

sequence_terms = " + ".join(f"{k+1}^{i}" for k in range(n))
sum_string = " + ".join(terms)
sum_values_string = " + ".join(sum_terms)

print(f"{sequence_terms} = {sum_string} = {sum_values_string} = {actual_sum}")
print()

The Worpitsky triangle thus offers an elegant and efficient means of computing sums of power
series using combinations. Its structural similarity to Pascal’s Triangle, coupled with its distinctive
properties, make it a powerful tool for a variety of mathematical calculations. when we multiply it
with Pascal we form the triangle: Multiplication Result:

1

1 1

1 6 2

1 28 36 6

1 60 300 240 24

1 155 1800 3900 1800 120

7.1.3 Polynomial Regression
Polynomial sequences can often be more insightfully analyzed by transforming them into a factorial
basis rather than examining them in their standard polynomial form. This approach simplifies the
process of identifying the sequence generator and deducing the polynomial coefficients.

https://colab.research.google.com/drive/1ff2Fz2TYJQzRVF5Foh1ola2qg-faJu5V?usp=sharing
https://colab.research.google.com/drive/10ZrAsThW9E-o1uKER2wLWHFHLXG97tmq?usp=sharing

162 Chapter 7. Polynomial Sequences

Motivation for the Change of Basis
The factorial basis transformation is designed to convert the standard polynomial coefficients to
those that correspond to a polynomial expressed in terms of falling factorials. The falling factorial
x(n) is defined as:

x(n) = x · (x−1) · (x−2) · . . . · (x−n+1)

This basis simplifies the calculation of polynomial coefficients and provides a more direct
relationship between the sequence values and the coefficients of the generating polynomial.

Using the Worpitzky Matrix
To apply the Worpitzky matrix, we must first transform our given sequence into a factorial basis.
Consider a polynomial sequence P = {P1,P2, . . . ,Pn} with its associated differences D,S,T,F .
Rather than analyzing the sequence P directly, we can investigate the sequence generator by
examining the transformed sequence {P1,D1,S1,F1, . . .}.

For instance, if P is a quadratic sequence, it suffices to use three terms Q= {Q1,Q2,Q3}, known
as the standard basis, to form the Vandermonde matrix. However, the extrapolated sequence Qe

can be equally generated from the factorial basis {Q1,D1,S1}, forming a set of linear simultaneous
equations. The coefficients of the quadratic q(x) = ax2 + bx + c can be deduced from these
equations:

2a = S1,

3a+b = D1,

a+b+ c = Q1.

Similarly, for a cubic polynomial, the relationships become:

6a = T1,

12a+2b = S1,

7a+3b+ c = D1,

a+b+ c+d = Q1.

These sets of equations can be represented in matrix form, with coefficients related to the
Worpitzky Triangle.

Matrix Representation of Polynomial Coefficients
Given a sequence of terms generated by a polynomial, we can represent the system of equations that
determine the polynomial coefficients in matrix form. For quadratic, cubic, and quartic polynomials,
these matrices correspond to the coefficients of the terms when the polynomials are expressed in
the standard basis.

7.2 Matrix form of linear systems
Quadratic Case
For a quadratic polynomial ax2 +bx+ c, the matrix equation is:

1 0 0

3 1 0

2 1 1

a

b

c

=

Q1

D1

S1

7.2 Matrix form of linear systems 163

Cubic Case
For a cubic polynomial ax3 +bx2 + cx+d, the matrix equation is:

1 0 0 0

7 1 0 0

12 3 1 0

6 2 1 1

a

b

c

d

=

Q1

D1

S1

T1

Quartic Case
Given a sequence P : p0, p1, p2, p3, . . . , pn, we want to find a quartic polynomial q(n) such that:

q(n) = an4 +bn3 + cn2 +dn+ e

where pk = q(k) for k = 0,1,2, . . . ,n.
To find the coefficients a,b,c,d,e, we solve the system of linear equations formed by plugging

in the values of n corresponding to the given sequence:

a(0)4 +b(0)3 + c(0)2 +d(0)+ e = p0

a(1)4 +b(1)3 + c(1)2 +d(1)+ e = p1

a(2)4 +b(2)3 + c(2)2 +d(2)+ e = p2

a(3)4 +b(3)3 + c(3)2 +d(3)+ e = p3
...
a(n)4 +b(n)3 + c(n)2 +d(n)+ e = pn

By solving this system, we obtain the coefficients of the quartic polynomial. This results in a
system of equations based on evaluating the polynomial at n = 1,2,3,4, giving us the values of the
sequence:

P(1) = a+b+ c+d + e = 21

P(2) = 16a+8b+4c+2d + e = 136

P(3) = 81a+27b+9c+3d + e = 465

P(4) = 256a+64b+16c+4d + e = 1176

We also have P(0) = e = 0 since the sequence starts from 0 when n = 0.
Using these values, we can set up our matrix equation Ax = b to solve for the coefficients

a,b,c,d,e.

A =

1 1 1 1 1

16 8 4 2 1

81 27 9 3 1

256 64 16 4 1

0 0 0 0 1

, x =

a

b

c

d

e

, b =

21

136

465

1176

0

164 Chapter 7. Polynomial Sequences

Since the sequence is generated by a quartic polynomial, the fourth differences should be constant.
This constant is the leading coefficient of the n4 term times 4! (factorial of 4).

Having determined the leading coefficient, one would proceed backwards through the differ-
ences to solve for the remaining coefficients of the polynomial. By evaluating the third, second,
and first differences (and the zeroth, which is the sequence itself), the coefficients of the n3, n2, n1,
and n0 terms can be determined, respectively.

For a quartic polynomial ax4 +bx3 + cx2 +dx+ e, the matrix equation and its solution can be
illustrated with the specific sequence (0, 21, 136, 465, 1176). whose zeroth, first, Second, and Third
differences respectively: P, D, S, T are laid out as follows:

P : 0 21 136 465 1176

D : 21 115 329 711

S : 94 214 382

T : 120 168

F : 48

The corresponding matrix equation using this "factorial basis" given the first four differences of
the sequence is:

1 0 0 0 0

15 1 0 0 0

50 7 1 0 0

60 12 3 1 0

24 6 2 1 1

a

b

c

d

e

=

48

120

94

21

0

We can see what is meant by this being a factorial basis now. We have:

a =
F
4!

=
48
24

= 2

Where F represents the fourth difference. Given that the fourth difference is 48 and 4! = 24,
the leading coefficient a is 2.

We note that the quartic matrix with the cubic submatrix at the bottom right, has entries of the
Worpitzky triangle:

11

11 11

11 32 23

11 72 123 64

11 152 503 604 245

11

152 11

503 71 11

604 122 31 11

245 63 22 11 11

To solve for the coefficients a,b,c,d,e, we compute the inverse of the 5x5 matrix (if it is invertible)

7.2 Matrix form of linear systems 165

and then multiply it by the right-hand side vector.

a

b

c

d

e

=

1 0 0 0 0

15 1 0 0 0

50 7 1 0 0

60 12 3 1 0

24 6 2 1 1

−1

48

120

94

21

0

II 8 Fibonacci Miscellany 169
8.1 Fibonacci primes
8.2 Fibonacci Oblongs
8.3 Self-Enumerating Attractor Sequence
8.4 head throwing

9 Perspective Compositions 183
9.1 Lemoine’s conjecture
9.2 Goldberg Variations
9.3 Compound Numbers written as sum of two Squares

10 Triangulation . 189
10.1 Prime Stratification with Polygonal Numbers
10.2 Geometric Structures under Klein’s Erlangen Pro-

gram
10.3 Figurative Polygon Numbers
10.4 Figurative speaking Recipricols
10.5 Google Sheets Implementation of Polygon-Prime

stratification
10.6 Python Implementation of Polygon-Prime stratifica-

tion

11 Exageration . 207
11.1 Double Factorial and Prime Divisibility
11.2 Historical Significance of Harmonic Series and Log-

arithms

12 Irrational Analysis 219
12.1 Euler, e as a continued fraction
12.2 Pi
12.3 Continued fractions form of surds
12.4 Square root difference of squares
12.5 Quadratic generator of silver ratio powers
12.6 Golden Ratio Quadratic Coefficients as Lucas Num-

bers
12.7 Metallic Rationals
12.8 Metallic Unit Area Right Triangles

13 Unlikely Unreality of the Ramadunjan being
Number . 239

14 The ABC Conjecture 243
14.1 The co-prime ABC Triplet
14.2 The ABC Conjecture

Part Two: Foot hill Explorations

8. Fibonacci Miscellany

“No man ever steps in the same river twice, for it’s not the same river and he’s not the same man.”
— Heraclitus

The Fibonacci sequence starts with f1 = 1, f2 = 2, and for all n > 2, fn = fn−1 + fn−2. The plot
below represents the first 10,000,000 integers on a polar coordinate system, in which each point’s
radial distance from the origin is determined by the natural logarithm of the integer which allows
for a more uniform distribution of points that grow exponentially.

(a) Prime-Fibonacci Polar Golden Angle Spiral

170 Chapter 8. Fibonacci Miscellany

The angular position of each integer is incremented by the
golden angle, which is defined by the equation a+b

a = a
b ,

where a and b are consecutive terms of the Fibonacci se-
quence and a > b. The golden angle, Φ is the fractional part
of a full circle that is not covered when dividing the circum-
ference into a segment proportional to φ = 1+

√
5

2 ≈ 1.618,
the ratio of the length of the larger arc, a to the length of
the smaller arc, b with the angle subtended by the smaller
arc being Φ = 360◦×

(
1− 1

φ

)
≈ 137.507764◦.

We have thus,

Golden angle
360◦

=

(
1− 2

1+
√

5

)
=

(√
5−1√
5+1

)
×

(√
5−1√
5−1

)
Φ

2π
=

(
(
√

5−1)2

5−1

)
=

(
5−2

√
5+1

4

)
=

(
3−

√
5

2

)
,

Φ = (3−
√

5)π ≈ 2.39996 rad

Because this angle is an irrational multiple of 360◦, our sequence fills the circle densely, and the
points corresponding to the Fibonacci numbers might be expected to eventually distribute across
all possible angles. However, due to the nature of the Fibonacci sequence’s growth, the points
asymptotically align along a specific radial line due to the fact that the ratio of successive Fibonacci
numbers converges to the golden ratio. The angle at which this alignment occurs1 appears for these
lowly numbers to be circa 221◦. The code, goldenAnglePolarPrimeFibonacci.ipynb achieves this.

Index Fibonacci Number Angle (degrees) Difference from Prior Ang (radians)

27 514229 222.46619 - 3.883 21/17π

28 832040 222.45079 0.01539 3.882 21/17π

29 1346269 222.42475 0.02604 3.882 21/17π

30 2178309 222.38331 0.04144 3.881 21/17π

31 3524578 222.31582 0.06748 3.880 21/17π

32 5702887 222.20690 0.10892 3.878 21/17π

33 9227465 222.03049 0.17640 3.875 37/30π

34 14930352 221.74516 0.28533 3.870 16/13π

Table 8.1: Fibonacci Numbers and Their Angles

Given that golden angle is irrational, this clustering might not be expected to converge to a
single angle. Instead, as you plot more and more Fibonacci numbers, you might expect these

1determineAsymptoticAngle.ipynb separately calculates this

https://colab.research.google.com/drive/1bhOUMrdx12FRjdXaT-SHt8U8TkT7HNj1?usp=sharing
https://colab.research.google.com/drive/1HQ3Xi8BDiK5kH8peRprMypboWtOb1vVn?usp=sharing

8.1 Fibonacci primes 171

clusters to spread out and fill the circle more evenly due to the density property of irrational
rotations. Not so.

Figure 8.2: Asymptotic Fibonacci Polar Golden Spiral Angle

8.1 Fibonacci primes

The Prime Number Theorem (PNT), as formulated by Gauss, describes the distribution of prime
numbers over the natural numbers. It states that the number of primes less than or equal to a given
number n can be approximated by the logarithmic integral function Li(n), but for practical purposes,
it is often approximated by the ratio n

ln(n) . This can be expressed mathematically as:

π(n)∼ Li(n)∼ n
ln(n)

where π(n) is the prime-counting function that counts the number of prime numbers less than or
equal to n, and ln(n) is the natural logarithm of n. In contrast, the occurrence of prime numbers in
the Fibonacci sequence, denoted by Fn, does not follow such a well-defined distribution. While the
Prime Number Theorem suggests a thinning out of primes as natural numbers grow, the distribution
of primes among the exponentially increasing Fibonacci numbers is less predictable and far less
dense. The attached image provides a visualization of this phenomenon using polar coordinates,
with prime Fibonacci numbers highlighted.

172 Chapter 8. Fibonacci Miscellany

Figure 8.3: Prime Fibonacci Polar Golden Spiral

We note the following:

n 1 2 3 4 5 6 7 8 9

fn 1 1 2 3 5 8 13 21 34

f 2
n 1 1 4 9 25 64 169 441 1156

f 2
n + f 2

n+1 2 5 13 34 89 233 610 1597 4181

and that the product of two Fibonacci terms that bookend the square of another sums to one with
alternating parity ,

f 2
3 − f2 · f4 = 22 −1 ·3 =+1

f 2
4 − f3 · f5 = 32 −2 ·5 =−1

f 2
5 − f4 · f6 = 52 −3 ·8 =+1

...

When n is even, the result of the expression is −1, and when n is odd (except for n = 2), the result
is +1. That is, given fn+1 = fn + fn−1:

f 2
n − fn−1 · fn+1 =

{
+1 if n is odd
−1 if n is even

So

f 2
n − fn−1 · (fn + fn−1) = f 2

n − fn−1 · fn − f 2
n−1

= f 2
n −2 f 2

n−1 − fn−1 · fn−2.

8.2 Fibonacci Oblongs 173

As in f 2
3 −2 f 2

2 − f2 · f1 = 22 −2(12)−1(1) = 1.
Also, for any Fibonacci number fn, the relation

f 3
n + f 3

n+1 − f 3
n−1 = fn+2

holds true such that

23 +33 −13 = 8+27−1 = 34

33 +53 −23 = 27+125−8 = 144

53 +83 −33 = 125+512−27 = 610

8.2 Fibonacci Oblongs
Consecutive partial sums of the squares of Fibonacci numbers, fn = {1,1,2,3,5,8,13,21, ..} give:

f 2
1 + f 2

2 = f2 · f3 where f 2
1 + f 2

2 = 12 +12 = 1 ·2
f 2
1 + f 2

2 + f 2
3 = f3 · f4 where f 2

1 + f 2
2 + f 2

3 = 12 +12 +22 = 2 ·3
f 2
1 + f 2

2 + f 2
3 + f 2

4 = f4 · f5 where f 2
1 + f 2

2 + f 2
3 + f 2

4 = 12 +12 +22 +32 = 3 ·5.

Putting numbers to this we see, the following,

12 +12 = 1 ·2
12 +12 +22 = 2 ·3

12 +12 +22 +32 = 3 ·5
12 +12 +22 +32 +52 = 5 ·8

12 +12 +22 +32 +52 +82 = 8 ·13

Figure 8.4: Lesser drawn Fibonacci Rectangle.
This is implemented by way of this code2 snippet in which the matplotlib.patches module
(aliased as patches) plays a central role.

import matplotlib.pyplot as plt
import matplotlib.patches as patches
x, y = 0, 0
fig, ax = plt.subplots()
ax.set_aspect(’equal’, ’box’)
blue = patches.Rectangle((x, y), 1, 1, edgecolor=’blue’, facecolor=’blue’)
ax.add_patch(blue)
ax.text(x + 0.5, y + 0.5, ’1’, ha=’center’, va=’center’, fontsize=12, color=’white’)

1. Purpose of matplotlib.patches:

2FibonacciRectangles.ipynb

https://colab.research.google.com/drive/1EIK5FnBinAsJXjMKvaYzrE2S-_NA9Cfy?usp=sharing

174 Chapter 8. Fibonacci Miscellany

• The code uses the Rectangle class from the patches module to create a blue square.
• blue = patches.Rectangle((x, y), 1, 1, edgecolor=’blue’, facecolor=’blue’)

creates a blue square (or rectangle with equal height and width):

(a) (x,y) denotes the bottom-left corner of the rectangle.
(b) The next two arguments 1, 1 define the width and height of the rectangle, respec-

tively. Since they are both 1, this creates a square.
(c) edgecolor=’blue’ sets the color of the square’s border.
(d) facecolor=’blue’ sets the fill color of the square.

2. Integration with matplotlib:

• After creating the Rectangle object, it’s not immediately displayed on the figure. To
make it visible, we need to add it to the axes (ax) using the add_patch() method.

• ax.add_patch(blue) integrates the Rectangle object with the main figure, enabling
it to be displayed when plt.show() (not provided in the code snippet) is called.

3. Labeling the Rectangle:

• The code also places a text label ’1’ at the center of the square using the ax.text()
method. The coordinates x + 0.5, y + 0.5 ensure the text is centered since the
square’s width and height are 1.

The Fibonacci numbers 1,1,2,3,5... have rectangles thus F = 2,6,15,40, ...that are extended
according to the following:

8.2 Fibonacci Oblongs 175

Figure 8.5: Fibonacci Rectangles

The Fibonacci rectangles property relies on the specific starting values of the Fibonacci sequence
(F0 = 0,F1 = 1) and the recursive relation, and it does not generally apply to other sequences3 with
different starting values, even if they use the same recursive relation.

3We note that the Lucas numbers Ln : 1,3,4,7,11,18,29,47, . . ., the property just described for Fibonacci numbers
does not hold. The Lucas numbers, like the Fibonacci numbers, are defined recursively as Ln = Ln−1 +Ln−2 with initial
conditions L0 = 2 and L1 = 1, but the sum of the squares of consecutive Lucas numbers is not equal to the product of
two consecutive Lucas numbers. For example:

12 +32 +42 +72 = 75 ̸= 11×7

176 Chapter 8. Fibonacci Miscellany

8.2.1 Aperiodic Tilings from Digital Fibonacci Sequences and Ulam Spirals

We will now generate aperiodic tilings using a modified Digital Fibonacci sequence wrapped in an
Ulam spiral. The Digital Fibonacci sequence is constructed based on three algorithmic conditions
applied to binary states representing bunnies (0) and rabbits (1):

1. A bunny (0) matures into a rabbit (1).
2. A rabbit (1) gives birth to a bunny (0) and matures further (becomes 10).
3. After g = 4 generations, a rabbit (1) expires and is represented by a space (" "), indicating

the end of its lifecycle.

In this context, g represents the generational limit for the survival of a rabbit. For g = 4, only
great grandparents are present with their bunnies, while g = 3 allows only grandparents. The case
where g = ∞ implies a Fibonacci persistent survivor rabbit with no expiration.

(a) Digital Fibonacci Ulam Spiral Tiling, no death

truncated_sequence = ’’.join(random.choices([’1’, ’0’], k=20000))

The Ulam spiral is constructed by wrapping the concatenated binary series of the Digital
Fibonacci sequence in a clockwise outward path. The sequence is generated in reverse, beginning
with the most recent generation and tracing back to the origin.

8.2 Fibonacci Oblongs 177

We may contrast this with an Ulam tiling based
on {0,1} drawn at random which looks like
the tiling opposite. The code, AperiodicU-
lamofLifeCycle10digitalFibonacci.ipynb generates
this tiling. The full concatenated digital series
reversed_full_digital_sequence are built by
reversing the sequence after generation and we limit
the scope of our analysis to the first 20000 digits
which allows for a sufficiently suggestive display.

Implementation methods of note are:
• Truncation: The sequence was truncated to the first k = 20000 digits to maintain a manage-

able spiral size for plotting.
• Sorting: The generation and plotting of the spiral required a systematic approach to sorting

and arranging the binary digits into their spiral positions.
• Visualization: Matplotlib was used for visualization, with adjustments made to the plotting

scale to ensure clear representation of the tiling pattern.

full_digital_sequence = ’’.join(digital_sequence_lifecycle_generations)
reversed_full_digital_sequence = full_digital_sequence[::-1]
truncated_sequence = reversed_full_digital_sequence[:20000]

Figure 8.7: Digital Fibonacci Ulam Spiral Tiling, g=3,4

https://colab.research.google.com/drive/1Cx1xUfkdoIA8Rj1nt7MPTzm8xbxXacWT?usp=sharing
https://colab.research.google.com/drive/1Cx1xUfkdoIA8Rj1nt7MPTzm8xbxXacWT?usp=sharing

178 Chapter 8. Fibonacci Miscellany

Theorem 8.2.1 — Zeckendorf’s Theorem. Every positive integer can be represented uniquely
as the sum of one or more distinct nonconsecutive Fibonacci numbers. More formally, given any
positive integer N, there exists a unique set of Fibonacci numbers {Fi} such that

N = ∑
i

Fi

where no two Fi are consecutive in the usual Fibonacci sequence.

For example, the Zeckendorf representation of the decimal number 100 in terms of Fibonacci
numbers (1,2,3,5,8,13,21, . . .) would be 100 = 89+ 8+ 3, which corresponds to the binary
representation of 10010 = 101001000F , where the subscript F indicates the Fibonacci base.

Figure 8.8: Zeckendorf representation of Primes.

The primes represented as an Ulam spiral in Zeckendorf representation appear to chime rather than
rhyme:

(a) Ulam Spiral of concatenated Zeckendorf represen-
tations of first 5000 Primes

The function generate_zeckendorf_representation from UlamPrimeFibonacciBaseEffi-
cient.ipynb implements the algorithm to find the Zeckendorf representation of a given integer and

https://colab.research.google.com/drive/1saruxPpd003_IY-p_Frpag1qq0EldRz9?usp=sharing
https://colab.research.google.com/drive/1saruxPpd003_IY-p_Frpag1qq0EldRz9?usp=sharing

8.2 Fibonacci Oblongs 179

operates as follows:
1. The fib_sequence array is prepared with Fibonacci numbers in ascending order.
2. Starting from the end of this array, the function iterates backwards, checking if the Fibonacci

number can be part of the representation for the given number.
3. If the Fibonacci number is less than or equal to the number, it is included in the representation,

and we move back two indices to ensure non-consecutiveness.
4. This process repeats, decrementing the number accordingly, until all possible Fibonacci

numbers have been checked.
5. The result is a binary string where ’1’s represent the inclusion of a Fibonacci number in the

sum, and ’0’s represent its absence.
Below is the Python code for the function:

def generate_zeckendorf_representation(number, fib_sequence):
representation = [’0’] * len(fib_sequence) # Start with a list of zeros
index = len(fib_sequence) - 1 # Begin from the highest Fibonacci number
while number > 0 and index >= 0:

if fib_sequence[index] <= number:
number -= fib_sequence[index]
representation[index] = ’1’
index -= 2

else:
index -= 1

Since the representation is built backwards, reverse and join it to form a string
return ’’.join(representation[::-1]).lstrip(’0’) or ’0’

180 Chapter 8. Fibonacci Miscellany

Fibonacci as a Divisibility Sequence
A sequence of integers {an}, is termed a divisibility sequence if for any positive integers m and n,
the condition n|m (i.e., n divides m) implies that an|am (i.e., an divides am). The Fibonacci sequence
{ fn} is the archetype with its greatest common divisor (GCD) given by the identity

gcd(fn, fm) = fgcd(m,n),

for fn and fm and fgcd(m,n), all Fibonacci numbers the later of which corresponds to the GCD of the
indices m and n. Every nth Fibonacci number divides evenly into every nth number after it in the
sequence. If n divides m (meaning m is a multiple of n), then gcd(n, m) = n. So, F(gcd(n, m)) =
F(n), which is essentially saying that the nth Fibonacci number divides the mth Fibonacci number
(where m is a multiple of n). For instance, 3 is the fourth Fibonacci number, and it divides into
the eighth term (21) but not the seventh (13). We have thus for n = 8 and m = 12, f8 = 21 and
f12 = 144 and the GCD of n and m is 4, and fgcd(8,12) = f4 = 3, which is also the GCD of F8 and
F12. Similarly, for n = 21 and m = 34, f21 = 10946 and f34 = 5702887 and the GCD of n and m is
1, and fgcd(21,34) = f1 = 1, which matches the GCD of F21 and F34. Other examples of divisibility
sequences include:

• The powers of a prime number p, where pn clearly divides pm for any integers n ≤ m.
• The sequence of factorials {n!}, since n!|m! whenever n ≤ m.
• The sequence of Lucas numbers, which follow the recurrence relation Ln = Ln−1 +Ln−2 with

initial conditions L0 = 2 and L1 = 1, is also a divisibility sequence.
Divisibility sequences often exhibit a strong connection to the structure of number fields and

algebraic integers and may also possess homomorphic mappings to other mathematical structures
and can have rich properties in the context of modular arithmetic and Diophantine equations. The
study of divisibility sequences intersects with other mathematical areas such as elliptic curves,
group theory, and the theory of algebraic numbers, which often do not apply to non-divisibility
sequences. The spider plot below has been generated for the first 72 combinations of (m,n) such
that j > (m,n)> i and for which the pairs’ GCD is greater than 1.

(a) GCD spider of First 20 Fibonacci pairs

8.2 Fibonacci Oblongs 181

Each axis of the spider plot represents a unique pair (m,n), distributed evenly by angle around
the circle. The radial distance from the center of the plot to the point on the axis represents the
GCD value, (greater than 1 in this selection), of the Fibonacci numbers at those indices. The plot
uses a user-defined function that generates pairs within a specified range and filters them based on
the GCD condition. The code, spiderFibGCD.ipynb includes a function that creates a spider plot to
illustrate the GCDs of pairs of Fibonacci numbers:

def create_spider_plot(pairs, title):
num_vars = len(pairs)
angles = [n / float(num_vars) * 2 * pi for n in range(num_vars)]
angles += angles[:1] # to close the plot (make it circular)
fig, ax = plt.subplots(figsize=(12, 12), subplot_kw=dict(polar=True))
ax.set_theta_offset(pi / 2)
ax.set_theta_direction(-1)
labels = [f’({m}, {n})’ for (m, n) in pairs]
plt.xticks(angles[:-1], labels)
plt.yticks([1, 2, 3, 5, 8], ["1", "2", "3", "5", "8"], color="grey", size=7)
plt.ylim(0, 8)
values = [gcd(fibonacci(m), fibonacci(n)) for (m, n) in pairs]
values += values[:1]
ax.plot(angles, values, linewidth=1, linestyle=’solid’)
ax.fill(angles, values, ’b’, alpha=0.1)
plt.title(title, size=11, color=’blue’, y=1.1)
plt.show()

• Calculating angles to evenly distribute each Fibonacci pair around a circle using the formula
n

num_vars ×2π , where n is the index of the pair and num_vars is the total number of pairs.
• The plot is circular,as achieved by appending the first angle to the end of the list of angles.
• A polar subplot is initialized using Matplotlib’s plt.subplots with a specified figure size.
• The plot is oriented to start from the top by setting a theta offset of π

2 and is made to proceed
in a clockwise direction.

• Labels for each axis represent the Fibonacci pairs and are set using Matplotlib’s plt.xticks.
• Custom y-ticks are set to represent possible GCD values, with the y-axis limit accommodating

the maximum expected GCD value.
• The GCD values for the Fibonacci pairs are plotted as points on the spider plot, connected by

lines, and the area under the curve is filled with color.
However, not all related sequences that follow a recurrence relation are divisibility sequences.

For instance, the Pell sequence defined by Sn = 2Sn−1 + Sn−2 with S0 = 0 and S1 = 1 does not
necessarily exhibit the same divisibility property as the Fibonacci sequence. It requires specific
structural features of a sequence for this property to hold.

https://colab.research.google.com/drive/1f8odVGpILLBJV4RhDoWs7H21Q8wIRQl0?usp=sharing

182 Chapter 8. Fibonacci Miscellany

8.3 Self-Enumerating Attractor Sequence
In the study of complex dynamical systems, the behavior of recursive sequences can be particularly
illuminating. Such sequences often exhibit characteristics akin to attractors—a set of states towards
which a system converges. The scatter plot provided visualizes a sequence known for its dynamical
properties illustrtaing two distinct behaviors reminiscent of fixed-point attractors and limit cycles.

(a) 20 instances of Count Concatenate Series

Fixed-point attractors are single values that the sequence settles into, regardless of the initial
state, as evidenced by the clustering of points at specific heights. In contrast, limit cycles which
represent a periodic oscillation of the sequence through a set of states.

The sequence S emerges from a recursive numerical process that is reflective of complex
dynamical systems. Beginning with an initial term s0, the sequence progresses through discrete
iterations. Each subsequent term sn, for n ranging from 1 to 100, is constructed by tallying the
digits in sn−1 and collating these counts into a new term that omits any count of zero. This process
guarantees a digit order descending from 9 to 0.

For instance, starting with s1 = ”10”, the sequence evolves as follows:
• From "10", we deduce s2 = ”1011”, indicating 1 occurrence of 0 and 1 occurrence of 1.
• From "1011", s3 is deduced to be "1031", reflecting 1 occurrence of 0 and 3 occurrences of 1.
• Consequently, given "1031", s4 is deduced to be "102113", signifying:

– "10" from the single occurrence of 0,
– "11" from the single occurrence of 1,
– "13" from the single occurrence of 3.

This algorithmically generated sequence thus exhibits the underlying structure and behavior akin to
attractors found in dynamical systems.

The code p-adConcatenate.ipynb and the code logPlotLimitConcatenation.ipynb

8.4 head throwing
An(3)= [1,2,4,8,15,29,56,108,208] f orn= 0to8; f orouroriginaltablearray([[1,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0], [1,1,0,0,0,0,0,0,0,0], [1,2,1,0,0,0,0,0,0,0], [1,3,3∗,1,0,0,0,0,0,0], [1,4,6,4∗,0,0,0,0,0,0], [1,5,10,10,3∗,0,0,0,0,0], [1,6,15,20,12,2∗,0,0,0,0], [1,7,21,35,31,12∗,1,0,0,0], [1,8,28,56,65,40,10,0,0,0]])

where i have added an * for the hockey stick calculation such that C5
7 = 12∗= 2∗+3∗+4∗+3∗

https://colab.research.google.com/drive/1zCsvgrJOfGkrEfF-wLSDoJHb3zV5GnKs?usp=sharing
https://colab.research.google.com/drive/1gDE5USgXjL8JPKA8x-yB7c34MBs9HWwP?usp=sharing

9. Perspective Compositions

9.1 Lemoine’s conjecture

Lemoine’s Conjecture posits that every odd integer greater than 5 can be expressed as the sum of a
prime number and twice another prime.

To count how many ways an odd number n can be expressed in the form n = p+2q, where
both p and q are prime numbers, we can follow these steps:

1. Iterate over all prime numbers p up to n.
2. For each p, check if n−p

2 is also a prime.
3. If so, increment a counter.
4. Return the final count.

Here is Python code to calculate Cn for any odd n and display it against n:

import sympy
def ways_to_express_n(n):

count = 0
for p in sympy.primerange(2, n):

if sympy.isprime((n - p) // 2):
count += 1

return count
def calculate_cn_for_odd_n(limit):

return {n: ways_to_express_n(n) for n in range(7, limit + 1, 2)}

The code delivers the following scatter plot:

https://colab.research.google.com/drive/1DRjbEaZjRuVh1_cyMeZb6oImHbXL6o-T?usp=sharing
https://colab.research.google.com/drive/1DRjbEaZjRuVh1_cyMeZb6oImHbXL6o-T?usp=sharing

184 Chapter 9. Perspective Compositions

Figure 9.1: Lemoine’s Prime Conjecture for n=50000 with red n ≡ 3 (mod 6)

The distinction in the scatter plot between red points satisfying n ≡ 3 (mod 6) and the other blue
points is rooted in the properties and distribution of prime numbers. Understanding the significance
of this distinction requires a brief foray back into the modular arithmetic of primes. Recalling
that all prime numbers greater than 3 can be expressed in one of two forms: either 1 more than a
multiple of 6 or 1 less, which is expressed as primes p having a residue of either 1 or 5 modulo 6.
This is because:

• Numbers that are 0 (mod 6) are divisible by 6.
• Numbers that are 2 (mod 6) or 4 (mod 6) are even.
• Numbers that are 3 (mod 6) are divisible by 3.

As a consequence, the only possible residues for primes greater than 3 are 1 and 5 when taken
modulo 6.

Given this understanding, the split in the scatter plot becomes a tool for observing any potential
patterns or anomalies in the distribution of numbers based on their modular congruence. By
highlighting numbers that are n ≡ 3 (mod 6) in red, we can discern if this subset behaves differently
or similarly to the rest in the context of Lemoine’s Conjecture or any other number theoretic
conjecture under consideration.

9.2 Goldberg Variations 185

9.2 Goldberg Variations
The Goldberg Conjecture, proposed by Michael Goldberg, states that every even integer greater
than 2 can be expressed as the sum of two prime numbers, denoted as m = p+q. It is an intriguing
conjecture that has captured the attention of mathematicians for many years. At present, it remains
an open question whether there exists a counterexample that disproves the conjecture.

One approach to probe the Goldberg Conjecture is to analyze the frequency at which individual
primes contribute to the sum of even numbers, m. By examining this frequency distribution, we
can gain insights into the behavior of prime numbers in relation to the conjecture. However, it is
essential to impose certain conditions to ensure meaningful observations.

Let us consider several specific values for m: 100, 1000, 10000, 100000, and a million. As
we investigate these cases, we must take into account the dominance of the prime number 3 in the
frequency chart if no condition is placed on the p+q sum.

To filter out contributions from lower numbers as m grows larger, we can limit our consideration
to prime numbers p and q such that p+q = m and the absolute difference between p and q, denoted
as |p−q|, is minimized. This additional condition ensures that we focus on pairs of primes that are
closest to each other, rather than arbitrary combinations.

For example, let us examine the case of m = 16. The possible pairs of primes satisfying the
condition p+q = 16 are (11,5) and (13,3). However, we will only consider the pair (11,5) since
it has the minimum absolute difference, |11−5|= 6, which is smaller than |13−3|= 10.

By applying this approach to each value of m, we can obtain a refined frequency chart that
highlights the contributions of prime numbers with the minimum absolute difference. This analysis
allows us to explore the distribution of prime pairs that fulfill the Goldberg Conjecture for larger
even numbers, shedding light on the potential patterns and properties of such pairs.

While the Goldberg Conjecture remains unproven, investigating the frequency of prime contri-
butions and considering the conditions mentioned above offers a promising avenue for exploring
the conjecture and deepening our understanding of prime numbers and their relationships.

Fermat’s Determination and Lagrange’s Theorems
Fermat’s determination, also known as Fermat’s theorem on sums of two squares, states that every
prime number of the form 4k+1 can be expressed as the sum of two squares. By investigating the
properties of quadratic residues, Fermat demonstrated that this is always possible for primes of the
given form.

Joseph-Louis Lagrange, an Italian-French mathematician, studied the representation of non-
negative integers as sums of perfect squares. Lagrange’s three-square theorem states that every
non-negative integer can be expressed as the sum of three perfect squares. In other words, for
any positive integer n, we can find integers a, b, and c such that n = a2 + b2 + c2. Similarly,
Lagrange’s four-square theorem states that every non-negative integer can be expressed as the sum
of four perfect squares. For any positive integer n, we can find integers a, b, c, and d such that
n = a2 +b2 + c2 +d2.

It is interesting to note the connection between Fermat’s theorem and Lagrange’s theorems.
Fermat’s theorem can be seen as a special case of Lagrange’s theorems, where we restrict our
attention to prime numbers of the form 4k+1. In this case, we are expressing a prime as the sum
of two squares. However, Lagrange’s theorems encompass all non-negative integers, allowing us to
express them as the sum of three or four squares.

Primes and sum of squares
"Fermat" Primes of the form 4k + 1 : 5,13,17,29,37,41, be expressed as the sum of two
squares, a2 + b2, where a and b are integers. Non-square "Gauss" Primes of the form 4k+ 3 :

186 Chapter 9. Perspective Compositions

7,11,19,23,29,31, .. Although these primes cannot be expressed as the sum of two squares, they
can be written as the sum of three squares, 13 = 22 + 22 + 12. Additionally, some of such non-
square primes can be expressed as the sum of two cubes, four squares, or other combinations of
powers.

9.3 Compound Numbers written as sum of two Squares
The diagonal matrix below shows the first 12 compound numbers formed as sum of two squares

1 9 25 49

1 2 10 26 50

9 34 58

25 34 50 74

49 98

Figure (is a scatter-plot of square numbers up to n = 30, focusing on the distinct patterns formed by
odd and even sums. The plot contrasts

√
s1 and

√
s2, with each point labeled by the sum c = s1+ s2.

Figure 9.2: Sum of Squares scatterplot

The Square numbers were generated using Python’s list comprehension for efficiency. Odd
and even squares were separated using conditional statements so as to be distinguished in the
visualization. Pairs of squares were combined using nested loops, offering control over the pair
selection and emphasizing pairs where s2 ≥ s1. This approach was chosen for its simplicity
and effectiveness over using permutation packages. The following matrix represents odd square
numbers up to n = 11 and their sums:

sumSquare:fig

9.3 Compound Numbers written as sum of two Squares 187

Consider in light of this the following product of sums of squares,

(12 +02)(22 +12) = 22 +12

(22 +12)(32 +22) = 42 +72

(32 +22)(12 +42) = 52 +142

(42 +32)(52 +22) = (4 ·5−3 ·2)2 +(4 ·2+3 ·5)2 = 142 +232

(52 +12)(22 +52) = (5 ·2−1 ·5)2 +(5 ·5+1 ·2)2 = 52 +272

which suggests the following identity could be true:

(x2 + y2)(z2 +w2) = (xz− yw)2 +(xw+ yz)2. (9.1)

Let us confirm that indeed it is:

Left-Hand Side (LHS) = (x2 + y2)(z2 +w2) = x2z2 + x2w2 + y2z2 + y2w2.

Right-Hand Side (RHS) = (xz− yw)2 +(xw+ yz)2

= x2z2 −2xyzw+ y2w2 + x2w2 +2xyzw+ y2z2

= x2z2 + x2w2 + y2z2 + y2w2.

Consider the following restrictions ([1]) on the prime factorisation of the divisors by which a
number, n can be constructed so as to be written the sum of squares:

• Fermat’s Theorem on the Sum of Two Squares: A prime number p of the form 4n+1 can
be expressed as the sum of two squares.

• Multiplicity of Gauss Type of primes for Sum of Two Squares to hold: A positive integer
n can be expressed as a sum of two squares if and only if every prime factor of the form
4n+3 in its prime factorization occurs with an even exponent.

Consider, the rectangular number 5490 the Fermat prime f = 61 = 62+52 and Gauss compliant
rectangle number n = 90 = 2×32 ×5 = 32 +92. Applying the identity (9.1) we have :

5490 = 61×90

= (62 +52)(32 +92)

= (6 ·3−5 ·9)2 +(6 ·9+5 ·3)2

= (18−45)2 +(54+15)2 = 272 +692.

We can play a similar game with triangle numbers. The code provided generates a comprehensive
visualization of the sums of all possible combinations of triangle numbers up to a specified limit, n.
The triangle numbers are generated by the function Tn =

n(n+1)
2 , which is a polynomial represen-

tation of the dot patterns forming equilateral triangles. The triangle numbers are foundational in
number theory and often appear in various conjectures and theorems, such as those postulated by
Goldberg.

Let us determine
Goldberg’s conjectures relate to the partitioning of numbers into sums of triangular numbers,

akin to the problem of representing numbers as sums of squares, which has been a subject of
extensive study in number theory. The code systematically explores all permutations of sums of
three triangle numbers, echoing the exhaustive nature of Goldberg’s investigations into number
partitions.

https://colab.research.google.com/drive/1IsUO86wgVFbFcTGzXZGymCNcOEgSyNQi?usp=sharing

188 Chapter 9. Perspective Compositions

Figure 9.3: The integers written as sum of three triangles.

triangle_numbers = [triangle_number(n) for n in range(0, n_max + 1)]
Split the triangle numbers into three sets: odd primes, odd non-primes, and evens (including 0)
t_odd_prime = [t for t in triangle_numbers if is_odd_prime(t)]
t_odd_nonprime = [t for t in triangle_numbers if t % 2 != 0 and not is_odd_prime(t)]
t_even = [0] + [t for t in triangle_numbers if t % 2 == 0]

Generating unique combinations and their sums
unique_combinations = set()
for t1 in triangle_numbers:

for t2 in triangle_numbers:
for t3 in triangle_numbers:

Create a sorted tuple of the combination to ensure uniqueness
combination = tuple(sorted((t1, t2, t3)))
unique_combinations.add(combination)

Extract unique sums and their corresponding combinations
unique_sums = {}
for combination in unique_combinations:

sum_comb = sum(combination)
if sum_comb not in unique_sums:

unique_sums[sum_comb] = combination

The legendary mathematician Carl Friedrich Gauss laid the foundation for the representation of
numbers as sums of polygonal numbers, a concept in the provided code.

9.3.1 Goldberg Conjecture
Here is a list of the first 10 non-square primes that are better expressed as the sum of two cubes and
four squares:

• 7 (Sum of two cubes: 13 +23; Sum of four squares: 12 +22 +12 +12)
• 19 (Sum of two cubes: 23 +33; Sum of four squares: 22 +32 +12 +12)
• 31 (Sum of two cubes: 13 +33; Sum of four squares: 32 +32 +12 +02)
• 43 (Sum of two cubes: 33 +43; Sum of four squares: 32 +42 +22 +02)
• 67 (Sum of two cubes: 33 +43; Sum of four squares: 42 +52 +22 +02)
• 79 (Sum of two cubes: 23 +53; Sum of four squares: 42 +52 +22 +22)
• 97 (Sum of two cubes: 23 +33; Sum of four squares: 52 +42 +22 +22)
• 103 (Sum of two cubes: 13 +23; Sum of four squares: 52 +42 +22 +22)
• 109 (Sum of two cubes: 13 +33; Sum of four squares: 62 +22 +12 +02)
• 127 (Sum of two cubes: 13 +23; Sum of four squares: 72 +22 +12 +12)

10. Triangulation

Just now, when I was on the point of coming into my room,
I stopped short because I felt in my hand a cold object which attracted my attention by means of a sort of

personality.
I opened my hand and looked: I was simply holding the doorknob.

— Jean-Paul Sartre, Nausea[17]

10.1 Prime Stratification with Polygonal Numbers

10.2 Geometric Structures under Klein’s Erlangen Program

Felix Klein’s Erlangen Program, introduced in 1872, is a framework for the classification of
geometries based on their invariance under groups of transformations. This approach provides a
unified perspective for understanding different geometric structures by examining the properties
that remain unchanged under specific sets of transformations.

Affine Geometry

Affine geometry is concerned with the study of figures invariant under affine transformations, which
include translations, linear transformations, and their combinations. These transformations preserve
points, straight lines, parallelism, and ratios of segments on parallel lines, but not distances or angles.
The affine group consists of all nonsingular linear transformations combined with translations.

Projective Geometry

Projective geometry focuses on properties that are invariant under projective transformations. Such
transformations preserve collinearity and the concept of a cross ratio, a key invariant in projective

190 Chapter 10. Triangulation

geometry1. Projective transformations include all linear transformations of the projective space,
considered as linear transformations of a vector space of one higher dimension, modulo scalars.

Metric Geometry

Metric geometry examines the properties invariant under isometries, the transformations that
preserve distances between points. This includes translations, rotations, reflections, and their
combinations in Euclidean space. Metric geometry studies angles, distances, and the congruence of
figures, focusing on the properties preserved under the isometry group.

We will humbly explore geometric spaces—affine, projective, and metric—revealing the
different structures each imposes on a generic space gaining a little insight into the what Bohm
considers to be the inherent order and transformations within geometric constructs such as polygons,
spirals, and structures with varying angles.

Figure 10.1: Polygon Numbers.

• Regular Polygon Approximated as a Circle: The significance lies in the equal ratio of
subsequent line segments (length a

length b = 1) and equal angles between them. This construct
illustrates affine geometry’s emphasis on maintaining ratios and parallelism.

• Spiral: Characterized by a varying length of segments where the ratio between the lengths
of successive segments remains constant (length a

length b = k), and a constant angle between seg-
ments. The spiral embodies projective geometry’s principles by showcasing how perspective
transformations can influence the perception of space and distance.

• Structure with Constant Length and Varying Angles (Angular Spiral): Maintains a
constant length for each segment while varying the angle between successive segments
in a constant ratio. This structure highlights the interplay between metric and projective
geometries, emphasizing how angular relationships can transform space while preserving
certain geometric properties.

Through these constructs, the distinctive features of affine, projective, and metric geometries are par-
tially evident. We may stage the scalings according to Fibonacci according to the code,BohmiamOrderFibonacci.ipynb
does this producing the following set of figures. Each construct embodies the progressive nature of
the sequence, translating numerical ratios into spatial dimensions. The constructs are rendered in a
Cartesian coordinate system, utilizing a polar transformation where necessary.

Line Segmented by Fibonacci Ratios

The line is constructed by determining segment lengths as the reciprocals of the Fibonacci numbers.
These lengths are then cumulatively summed to position the segments along a single axis. The
visualization exhibits a linear growth pattern, where each segment diminishes in size.

1The cross ratio of four collinear points A,B,C, and D is defined as AC
BC : AD

BD , where AC, BC, AD, and BD are distances
between the points. For example, if the points are on the real line with coordinates a,b,c, and d, the cross ratio is
calculated as (a−c)(b−d)

(a−b)(c−d) .

https://colab.research.google.com/drive/19zz23_jzpiRfMf9-l7-dqiuDhUwkEim3?usp=sharing

10.2 Geometric Structures under Klein’s Erlangen Program 191

Fibonacci Polygon
Angles for the polygon are generated through a recursive addition, each influenced by the Fibonacci
sequence. These angles are then used to compute the vertices of the polygon, ensuring the closure
condition is satisfied. The polygon unfolds in a convex form with vertices positioned at intervals
dictated by the sum of the angles of the preceding two steps. An angular progression, driven by the
additive property of the Fibonacci sequence, culminates in a closed convex polygon.

Fibonacci Spiral
The spiral is crafted by plotting points whose radial separation aligns with the inverse Fibonacci
ratios. Each turn of the spiral draws further from the center, illustrating the expansive nature of the
sequence in a two-dimensional plane.

Angular Fibonacci Spiral
Commencing from a base angle, each subsequent angle is incremented by an amount derived
from the Fibonacci sequence. The vertices thus created are connected, forming a path that spirals
outward.

Figure 10.2: Polygon Numbers.

Problem 10.1 How would varying both ratio of length of line segments and ratio of angles?

192 Chapter 10. Triangulation

10.3 Figurative Polygon Numbers

The polygonal numbers are a sequence of numbers that can be represented as dots arranged in
the shape of regular polygons. We are interested here in stratifying the prime numbers by these
sequences in order to pin down some further structure in the primes. We will explore here how the
pattern of polygonal numbers extends from triangles to other polygons.

Figure 10.3: Polygon Numbers.

Triangular numbers, Tn are 3-gon numbers whose dot representation form a triangular pattern.
The n-th triangular number is the number of dots in the triangular arrangement, formed as a result
of stacking dots to form an equilateral triangle with formula :

P4(n)≡ T (n) =
n · (n+1)

2
.

A pattern emerges when adapting the formula for square numbers, Sn = n2 + 0. to higher r-gon
forms from which we infer without full induction the formula for n-gon numbers.

• Square (r=4):

P4(n) =
n(2n+0)

2
= n2

• Pentagonal (r=5):

P5(n) =
n(3n−1)

2

• Hexagonal (r=6):

P6(n) =
n(4n−2)

2
= n(2n−1)

• Octagonal (r=8):

P(n) =
n(6n−4)

2
= n(3n−2)

Theorem 10.3.1 — r-sided polygonal numbers. have an nth generator function of the form:

pn(r) =
n
2
· ((r−2)n+(4− r)) =

1
2
[(r−2)n2 − (r−4)n] (10.1)

Problem 10.2 How might one utilise this formula to determine the sum of the recipricol of
hexagonal numbers?

10.3.1 Triangle Number Sum and Difference Quartets
Our data analysis starts from the initial observation that within the subset of triangular numbers:
T (3) = 6,T (5) = 15,T (6) = 21,T (8) = 36 we note that the sum and difference for the pair T (5)
and T (6) are also triangle numbers:

T (5)+T (6) = 15+21 = 36 = T (8)

T (6)−T (5) = 21−15 = 6 = T (3)

10.3 Figurative Polygon Numbers 193

We therefore ask within the the full set of Tn which pairs of triangular numbers Tx and Ty combine
such that both their sum and difference are also triangular numbers. That is, for a pair Tx and Ty,
both Tx +Ty and |Tx −Ty| should also be represented as Tz for some integer z.

The code, addingTriangles.ipynb generates the scatter plot presenting all pairs of triangular
numbers that satisfy such conditions. Each co-ordinate point (Tx,Ty) indicates that the numbers Tx

and Ty satisfy the property that both their sum and difference are triangular numbers.

Figure 10.4: Sum and Difference Triangle Numbers up to n=100000

The code also delivers a table that presents the set of such sum difference quartets.

T(5) = 15 T(6) = 21 T(8) = 36 T(3) = 6

T(14) = 105 T(18) = 171 T(23) = 276 T(11) = 66

T(27) = 378 T(37) = 703 T(46) = 1081 T(25) = 325

T(39) = 780 T(44) = 990 T(59) = 1770 T(20) = 210

T(54) = 1485 T(91) = 4186 T(106) = 5671 T(73) = 2701

Table 10.1: Sum Difference Quartet of Triangle numbers

The function triangular(n) from addingTriangles.ipynb performs four main tasks:
1. Compute the list of triangular numbers up to a user-defined n.
2. Iterate over pairs of these triangular numbers, calculating their sum and difference.
3. Check if both the sum and difference are also triangular numbers.
4. If both conditions are satisfied, the pair is intended for visualization on a scatter plot.

def triangular(n):
return n * (n + 1) // 2

try:
max_n = int(input("Enter the value of n to sum triangular numbers: "))

https://colab.research.google.com/drive/14OQaQSkso95z4vhsfZGpQsY9veyYNWL_?usp=sharing
SUmDifferenceTriangles:fig
https://colab.research.google.com/drive/14OQaQSkso95z4vhsfZGpQsY9veyYNWL_?usp=sharing
https://colab.research.google.com/drive/14OQaQSkso95z4vhsfZGpQsY9veyYNWL_?usp=sharing

194 Chapter 10. Triangulation

except ValueError:
print("Please enter a valid integer.")
exit()

triangular_numbers = [triangular(n) for n in range(1, max_n + 1)]
triangular_set = set(triangular_numbers)
max_width = len(str(triangular_numbers[-1]))
Tx = []
Ty = []
for i in range(len(triangular_numbers)):

for j in range(i + 1, len(triangular_numbers)):
sum_ = triangular_numbers[i] + triangular_numbers[j]
diff = triangular_numbers[j] - triangular_numbers[i]
if sum_ in triangular_set and diff in triangular_set:

sum_index = triangular_numbers.index(sum_) + 1
diff_index = triangular_numbers.index(diff) + 1

• Error Handling: A try-except block captures invalid input, ensuring the program requires a
valid integer for max_n.

• Optimization: A set, triangular_set, is used to improve the efficiency of membership tests
for determining if a sum or difference is a triangular number, leveraging the faster performance
of set operations over list searches.

Noteworthy Aspects of the implementation are:
• The program efficiently generates triangular numbers using a list comprehension, encapsulating

the generation logic within the triangular function.
• Iteration over triangular number pairs is systematically performed, with consideration for the

unique properties of triangular numbers, especially focusing on their sum and difference.
• The use of lists Tx and Ty suggests a preparation for data visualization, likely through scatter

plot, though the actual plotting implementation is not included in the snippet.

10.3 Figurative Polygon Numbers 195

10.3.2 Primitive Triangle Square pairs

Our dataset of focus here is of products of triangular numbers, T (i) and T (j), that form perfect
squares excluding those "non-trivial" cases of congruent squared pair products where T (i) = T (j),
or those products involving T (1). Rather, we are interested in the following couples.

Definition 20 Primitive Triangular Square pair (T (i),T (j)), as a pair of Triangle numbers that
satisfies the following conditions:

•• i ̸= j to exclude congruent squared pairs where T (i) = T (j),
• i ̸= 1 and j ̸= 1 to exclude products involving T (1).

Some instances of such couples for T (2) = 3 are tabulated in Table 10.2 such as (T (2),T (24))
whose product gives a square of 30 side length. The code productTriangles.ipynb produces the

.

Expression Result Square Representation

T (2)×T (24) 900 302

T (2)×T (242) 88209 2972

T (2)×T (2400) 8643600 29402

T (2)×T (23762) 846984609 291032

Table 10.2: Sample of primitive square triangle pairs for T (2).

log-log plot of Figure 10.5 of a sample of all such primitive square-paired triangles (T (i),T (j)).

Figure 10.5: Non congruent triangle-pair squares for up to i=10000

https://colab.research.google.com/drive/1Q9YLHYkPyxsn_EX9dLMOIe47XvFfsgjy?usp=sharing

196 Chapter 10. Triangulation

The code includes a nested loop structure to find pairs of triangular numbers, T (i) and T (j),
whose product is a perfect square. The outer loop iterates over i, and the inner loop iterates over j,
to consider the product T (i)×T (j):

def triangular(n):
return n * (n + 1) // 2

def is_square(n):
root = int(n**0.5)
return root * root == n

def find_square_triangles(max_range):
data = [] # Collecting data for all T(i) and T(j)
for i in range(2, max_range): # Start from 2 to avoid T(1)

for j in range(i+1, max_range):
product = triangular(i) * triangular(j)
if is_square(product):

square_side_length = int(product**0.5)
data.append((i, j, triangular(i), triangular(j), square_side_length))

return data

To ensure we find only the set of primitive pairs that result in squares, we nest the loop according
to i ̸= j, i ̸= 1, and j ̸= 1:

• Exclude Congruent Squared Pairs: avoid cases where the same triangular number is
squared, i.e., T (n)× T (n), since this will always result in a perfect square and is not of
particular interest. This is achieved by ensuring that j starts from i+1, avoiding the case
when i = j.

• Exclude T (1) Instances: Since T (1) = 1, to avoid this trivial multiplication, we start the
outer loop from i = 2.

• Exclude T (i) = T (j): To ensure we do not include ’perfect triangle squares’ where T (i) =
T (j), we again start the inner loop from j = i+1.

10.4 Figurative speaking Recipricols

Following "Beyond the Basel Problem: Sums of Reciprocals of Figurate Numbers," We aim here to
summarise the derivation of a formula for the sum of the reciprocals of figurate numbers, starting
from the infinite series for a given polygonal number side a.

Consider the sum of the reciprocals of the figurate numbers defined by:

Sa :=
∞

∑
n=1

2
(a−2)n2 − (a−4)n

.

For even values of a ≥ 6, this can be represented as: Given the sum of reciprocals of figurate
numbers:

Sa :=
∞

∑
n=1

2
(a−2)n2 − (a−4)n

,

for even values of a ≥ 6, we consider the modified series:

∞

∑
n=1

1
n((a−2)n− (a−4))

x(a−2)n−(a−4)
∣∣∣∣
x=1

.

10.4 Figurative speaking Recipricols 197

Utilizing the Maclaurin series for ln(1− t) =−∑
∞
n=1

1
n tn, the series above can be identified as an

antiderivative of the form:

− 1
xa−3 ln(1− xa−2),

after setting x to 1 post-integration.
Using the Maclaurin series expansion for ln(1− t) and performing integration by parts, we find

the antiderivative of the form:∫ 1
xa−3 ln(1− xa−2)dx.

Applying integration by parts with u = ln(1− xa−2) and dv = x−a+3 dx, we get:∫
x−a+3 ln(1− xa−2)dx = . . .

We replace a by 2k+2 to match our desired S2k+2, and after simplifying, we use l’Hôpital’s
rule to evaluate the limit of the integral as x approaches 1 from the left, resulting in:

lim
x→1−

F2k+2(x) = 0.

Thus, the sum S2k+2 is obtained by evaluating the negative of the limit of F2k+2(x) as x
approaches 0 from the right and as x approaches 1 from the left. The application of l’Hôpital’s rule
simplifies the expression to:

S2k+2 =−2
[

lim
x→0+

F2k+2(x)− lim
x→1−

F2k+2(x)
]
.

The resulting expression for S2k+2 is the sum of the reciprocals of the figurate numbers for the
specific side 2k+2.

We demonstrate how setting k = 2 yields the sum of reciprocals of hexagonal numbers:

S2k+2 =
ln(k)
k−1

− 1
k−1

k−1

∑
j=1

cos
(

2 jπ
k

)
ln
(

2−2cos
(

jπ
k

))
+ . . .

For k = 2, the formula simplifies to:

S6 = ln(2)− 1
1

[
cos(π) ln(2−2cos(

π

2
))
]
+ . . .

Since cos(π) =−1 and cos(π

2) = 0, this further simplifies to:

S6 = ln(2)− (− ln(2))+ . . .

The dots indicate terms that will be evaluated next. Observing that for k = 2, the sums involving
sine terms will vanish because sin(2 jπ

2) = sin(jπ) is zero for integer j. Thus, the only non-vanishing
term for k = 2 is the logarithmic term, which simplifies to 2ln(2), matching the value provided in
the table for hexagonal numbers:

S6 = 2ln(2)

198 Chapter 10. Triangulation

For even values of a, this sum can be expressed using a formula involving logarithms and trigono-
metric functions, which in the case of a = 2n for n ≥ 2, is given by:

S2k+2 =
ln(k)
k−1

− 1
k−1

k−1

∑
j=1

cos
(

2 jπ
k

)
ln
(

2−2cos
(

jπ
k

))

+
2

k−1

k−1

∑
j=1

sin
(

2 jπ
k

)
tan−1

1− cos
(

jπ
k

)
sin
(

jπ
k

)

− 2
k−1

k−1

∑
j=1

sin
(

2 jπ
k

)
tan−1

−cos
(

jπ
k

)
sin
(

jπ
k

)

Applying this formula for specific values of k delivers a table of values for S2k+2, correlating
to the sums of reciprocals of various figurate numbers. The table derived from this formula is as
follows:

Number of Sides Name of Polygons Sum of Series

3 Triangular 2

4 Square (Basel Problem) π2

6

6 Hexagonal 2 ln(2)

8 Octagonal 3 ln(3)−
√

3π

4 +
√

3π

12

10 Decagonal ln(2)+ π

6

14 Tetraikaidecagonal 2
5 ln(2)+ 3

10 ln(3)+
√

3π

10

Table 10.3: Values of Sums of Reciprocals of Figurate Numbers

For example, the sum of the reciprocals of hexagonal numbers, which are a specific type of
figurate numbers corresponding to k = 2, is given by 2ln(2). This result and others in the table are
derived by evaluating the series S2k+2 using the above formula for the corresponding k. For further
reading on this topic, the reader is referred to the original paper available at ResearchGate.

Conclusion

Through the application of the Maclaurin series, integration by parts, and l’Hôpital’s rule, we derive
a comprehensive formula for the sum of reciprocals of figurate numbers, denoted by S2k+2. The
proof demonstrates a remarkable connection between the figurate numbers, the natural logarithm,
and trigonometric identities.

10.4.1 recurrence relations

1. T (n) = n+T (n−1) with T (1) = 1
2. S(n) = (2n−1)+S(n−1) with S(1) = 1
3. O(n) = n+n+1+O(n−1) with O(1) = 2
4. P(n) = 3n−2+P(n−1) with P(1) = 1

https://www.researchgate.net/publication/251831626_Beyond_the_Basel_Problem_Sums_of_Reciprocals_of_Figurate_Numbers

10.4 Figurative speaking Recipricols 199

10.4.2 Gauss’s three triangle Theorem

Gauss at the tender age of 19 = 1+3+15 proved that the Natural numbers can all be represented
as the sum of at most three triangle numbers. Here are the first and last twenty representations for a
mere n=1000:

n T1 T2 T3 s

1 1 - - 1

2 2 - - 1

3 1 1 1 3

4 4 - - 1

5 1 1 3 3

6 6 - - 1

7 1 3 3 3

8 1 1 6 3

9 3 3 3 3

10 1 3 6 3

11 11 - - 1

12 1 1 10 3

13 1 6 6 3

14 1 3 10 3

15 3 6 6 3

16 3 3 10 3

17 1 1 15 3

18 6 6 6 3

19 1 3 15 3

20 20 - - 1

980 1 276 703 3

981 15 105 861 3

982 1 78 903 3

983 1 36 946 3

984 3 78 903 3

985 3 36 946 3

986 28 55 903 3

987 6 78 903 3

988 6 36 946 3

989 10 276 703 3

990 21 66 903 3

991 1 210 780 3

992 1 1 990 3

993 1 496 496 3

994 1 3 990 3

995 1 91 903 3

996 3 3 990 3

997 1 6 990 3

998 1 136 861 3

999 3 6 990 3

1000 3 136 861 3

This code produces the following scatterplot:

https://colab.research.google.com/drive/1OVBQb7Z8wqo2CjQpQrO2XIuhpF6G3tWi?usp=sharing

200 Chapter 10. Triangulation

Figure 10.6: Gauss’s three triangles: plot of Highest Triangle number versus n for up to n=1000.

The key features of the code are:

for n in range(1, max_n+1):
t1, t2, t3 = represent_as_triangles(n, triangular_numbers)
s = sum([1 for t in [t1, t2, t3] if t != "-"])
table.append([n, t1, t2, t3, s])

print(f"{’n’:<5}{’T1’:<5}{’T2’:<5}{’T3’:<5}{’s’}")
print(’-’ * 25)
for row in table:

print(f"{row[0]:<5}{row[1]:<5}{row[2]:<5}{row[3]:<5}{row[4]}")

negative n Series
The table generated presents the coefficients of the quadratic generators for the polygon number
series for negative n values, ranging from n = 0 to n =−10, across various polygons with sides
from 3 (triangles) to 8 (octagons).

r a b c

3 1
2 −3

2 1

4 1 -2 1

5 3
2 −5

2 1

6 2 -3 1

7 5
2 −7

2 1

8 3 -4 1

10.4 Figurative speaking Recipricols 201

These coefficients were derived by analyzing the first and second differences of the polygon
number series for each r-gon. The general quadratic generator for the negative n series is given by:

P−
r (n) = an2 +bn+ c

where the coefficients a, b, and c depend on the number of sides r of the polygon. and can be
inferrred as a = r−2

2 , b =− r
2 , and c = 1, giving:

P−n
r =

r−2
2

n2 − r
2

n+1 =
1
2
[(r−2)n2 − rn+2]

We confirm this by substituting r = 6 (hexagon) into formula which gives:

P−n
6 =

6−2
2

n2 − 6
2

n+1

P−n
6 = 2n2 −3n+1.

202 Chapter 10. Triangulation

10.4.3 Polygon number Ulam spirals

The Ulam spiral for the first, second and fourth polygon numbers look like the following.

Figure 10.7: Ulam Spiral for triangle, square and hexagon numbers.

The website OEIS run by N Sloane is a remarkable website that tracks any such sequence that
you may consider. We can see the pentagonal number sequence in fig 17.18.

Figure 10.8: OEIS sequence website.

10.5 Google Sheets Implementation of Polygon-Prime stratification

Now one way to investigate how many prime numbers are in between each of the polygon number
sequences is to set up a COUNTIF clause in a spreadsheet as in fig 10.9 below.

Figure 10.9: Google Sheets count of Fermat Numbers stratified by polygon numbers.

Google sheets enables you to plot the chart of each of the frequencies of intervening primes
between polygon numbers as in fig 10.10 below.

https://oeis.org/A000326
https://docs.google.com/spreadsheets/d/1eQyXbmi1iMyQBbUI4PdJlCkPRD4kDuY49jxOemVxTLw/edit?usp=sharing

10.6 Python Implementation of Polygon-Prime stratification 203

Figure 10.10: Google Sheets chart of Gauss Primes stratified by polygon numbers.

10.6 Python Implementation of Polygon-Prime stratification

This is more easily implemented in Python using the code Here for n=1000 we note the power law
best fit of the order 4/5

Figure 10.11: Python chart of Primes stratified by polygon numbers.

That is to say that the primes appear between respective polygon numbers of respective r-gon
sequences in increasing frequency according to a 4/5 power law reminiscent of Kleiber’s Law2

2This law has important implications in ecology, physiology, and evolutionary biology. It suggests that larger animals
are more energy-efficient per unit of body mass, which may provide advantages in terms of resource utilization and
survival. However, the exact value of the exponent b can vary across different taxonomic groups and physiological
conditions. While Kleiber’s Law is widely observed, there are exceptions and complexities that researchers continue to
investigate.

https://colab.research.google.com/drive/1MlrwJvEVv4IptweO4z8Ybf-FVHVyW5N7?usp=sharings

204 Chapter 10. Triangulation

or the Metabolic Scaling Law, describing the relationship between the surface area and volume of
animals and their metabolic rate. The law states that as an animal’s size increases, its metabolic rate
increases at a slower rate than its volume. In other words, larger animals have a relatively lower
metabolic rate per unit of body mass compared to smaller animals expressed as B = a ·Mb, where:

B : Animal’s basal metabolic rate (energy consumption at rest)

M : Animal’s body mass

a : Proportionality constant

b : Exponent, generally within the range of 0.67 to 0.75

The code has functions to generate polygon numbers and the Power law function of best fit while
generating lists of r-polygon running from 1 to n and a list of prime numbers using the primerange
function:

def polygon_number(n, r):
return n * ((r - 2) * n + (4 - r)) // 2

def power_law(x, a, b):
return a * np.power(x, b)

n_values = list(range(1, 10001))
r_values = list(range(3, 9))
polygon_sequences = [[] for _ in r_values]
for n in n_values:

for i, r in enumerate(r_values):
polygon_sequences[i].append(polygon_number(n, r))

prime_numbers = list(primerange(1, max(polygon_sequences[-1])))

The following code snippet is responsible for calculating the number of prime numbers that fall
between consecutive polygon numbers in the generated sequences.

prime_counts = [[0] * len(polygon_sequences[0]) for _ in r_values]

for i, sequence in enumerate(polygon_sequences):
for j in range(len(sequence) - 1):

prime_counts[i][j] = len([p for p in prime_numbers if sequence[j]
< p < sequence[j + 1]])

This first line initializes a list of lists named prime_counts. The outer list has a length equal to the
number of different values of r (polygon sides). Each inner list has a length equal to the number of
polygon numbers generated for the specific value of r. All inner lists are initially filled with zeros.
The expression [0] * len(polygon_sequences[0]) creates a list of zeros with a length equal
to the number of polygon numbers in the sequence for the first value of r.

The outer loop variable _ is used as a placeholder since its value is not used in the loop body.
The outer loop iterates over each polygon sequence in the polygon_sequences list. i represents
the index of the current sequence and sequence represents the current list of polygon numbers.
The inner loop iterates over each element in the sequence list except the last one. j represents the
index of the current element. Inside the inner loop, a list comprehension is used to count the number
of prime numbers that fall between the current and the next polygon numbers. [p for p in
prime_numbers if sequence[j] < p < sequence[j + 1]] creates a list of prime numbers
(p) from prime_numbers that satisfy the condition that they are greater than the current polygon

10.6 Python Implementation of Polygon-Prime stratification 205

number (sequence[j]) and less than the next polygon number (sequence[j + 1]). The len()
function is then used to count the number of prime numbers in this list. The count is stored in the
prime_counts list at the corresponding position for the given r value (i) and the current polygon
number index (j). The plot itself is generated by the following snippet:

for i, color in enumerate(colors):
plt.scatter(n_values, prime_counts[i], color=color, label=labels[i], s=10)
popt, _ = curve_fit(power_law, n_values, prime_counts[i])
best_fit_equation = f’y = {popt[0]:.2f} * x^{popt[1]:.2f}’
best_fit_equations.append(best_fit_equation)

for i, best_fit_equation in enumerate(best_fit_equations):
plt.plot(n_values, power_law(n_values, *curve_fit(power_law, n_values, prime_counts[i])[0]), color=colors[i], linestyle=’--’)

For each value of i and for every color in the list of colors:

Use the scatter plot function to display the data points: - n_values on the x-axis - prime_counts[i]
on the y-axis - Color the points with the corresponding color - Label the data points with the associ-
ated label from labels - Set the size of the points to 10

Use the curve_fit function to fit a power law model to the data: - Input n_values as the
independent variable - Input prime_counts[i] as the dependent variable - Capture the fitted
parameters in popt - Disregard the second output

Construct the equation of the best-fit line: - Calculate the coefficient a from popt[0] - Calculate
the exponent b from popt[1] - Create the equation y = a · xb

Add the constructed equation to the list of best-fit equations.

10.6.1 Transformation to Log-Log Plot
To analyze data that seems to follow a fractional power law y = c · xm in a linear-linear plot, we
transform the data into a log-log plot. The equation becomes:

log(y) = log(c)+m · log(x)

Linear Regression:
In the log-log plot, the power law relationship appears as a straight line. Performing a linear

regression on the log-transformed data helps us determine the values of m and log(c).
Interpreting the Results:
The slope m of the best fit line corresponds to the power exponent. It indicates the type and

strength of the power law relationship. Positive m implies a direct relationship, while negative m
implies an inverse relationship.

The intercept log(c) provides information about the coefficient c. Exponentiating log(c) gives
the actual coefficient value. c controls the scaling of the power law and relates to the normalization
or amplitude.

In summary, transforming data and performing linear regression on a log-log plot helps de-
termine the power exponent (m) and coefficient (c) of the power law relationship. The exponent
signifies the nature of the power law, while the coefficient controls its scaling.

11. Exageration

“The beauty of mathematics only shows itself to more patient followers.”
— Maryam Mirzakhani

11.1 Double Factorial and Prime Divisibility

The lesser known variant of the factorial operation on the Naturals, n! is the double factorial, n!!,
the product of all integers up to n that have the same parity as n. Thus for even n = 2k, n!! = 2k · k!
represents the product of all even numbers and for odd n = 2k+ 1, it’s the product of all odd
numbers up to n. Now, for the subset of the prime number naturals, a double factorial operation can
be defined based either on the cardinal value of the prime (the prime number itself) or the ordinal
(position) of the prime in the sequence of all primes.

Cardinal-Based Double Factorial: pi!!

Cardinal prime numbers are the primes as considered by their magnitude: the prime number
5 is the cardinal prime representing the quantity of five. The standard double factorial pi!! as
a cardinal-based operation, treats the prime pi like any other integer so that for all the (odd
except 2) primes, pi!! is the product of all odd numbers up to pi. This means for instance
that11!! = 11×9×7×5×3×1

primorial functionp(n)#

The primorial function can be defined in two contexts:
1. Primorial of an Integer n, denoted as n#:

n# = ∏
p≤n

p is prime

p

208 Chapter 11. Exageration

where the product is taken over all prime numbers p that are less than or equal to n.
2. Primorial of the nth Prime, denoted as p(n)#:

p(n)# =
n

∏
i=1

p(i)

where p(i) represents the ith prime number and we have thus for p(5)#, the product of the first 5
prime numbers: p(5)# = 2×3×5×7×11 = 23101 = 11#

Ordinal-Based Double Factorial: pi##

Ordinal prime numbers are the primes considered by their position in the sequence of prime
numbers: 5 is the 3rd ordinal prime number given the sequence 2,3,5,7, For [p1, p2, ..p6, · · ·] =
[2,3,5,7,11,13, · · ·], the ordinal fifth prime 11 has single ordinal factorial p5# = 11×7×5×3×2
with a double ordinal factorial of p5## = 11×5×2 where we have introduces the notation pi# to
represent a product based on the ordinal position of the prime number in the sequence.:

• For even ordinal positions i = 2k: pi# = p2k · p2k−2 · p2k−4 · . . . down to lowest prime.
• For odd ordinal positions i = 2k+1: pi# = p2k+1 · p2k−1 · . . . down to lowest prime.

Regression Modelling of prime factorial ratios

The process of fitting data to a model is a fundamental task in statistical analysis. In the context of
analyzing the ratios of prime factorials, we will deploy both exponential and power-law regression
models. The ratio of cardinal double, pi!! to single, pi! is the reciprocal of pi−1!!:

pi!!
pi!

=
1

pi−1!!
.

Consideration of i = 4 and p7 = 7, suggests an analogous relationship for ordinal prime factorials:

p4##
p4#

=
7×3

7×5×3×2
=

1
5×2

=
1

p3##

generalising to: pi# = pi##× pi−1## for i ≥ 2. Our first model of the cardinal double prime
assumes an exponential relationship between the adjusted ratios of the prime factorials and the
index of the prime numbers. As such the regression is formulated as y = eax+b where y represents
the ratio, x is the index of the prime number, and a, b are the parameters of the model. The regression
is visualized in a scatter plot with a logarithmic scale using Python’s curve_fit function from the
scipy.optimize library.

In contrast for the ordinal primes we deploy a power law that describes a variety of phenomena
in the natural and social sciences, and is characterized by a polynomial relationship of the form,
y = bxa where a is typically a fractional power.

One challenge faced during such an implementation is the optimization algorithm’s tendency to
converge to a local minimum that might not capture the required (as it happens) negative power
relationship. To address this, we need to constrain the parameters using the bounds argument
in the curve_fit function. Setting bounds ensures the algorithm searches for a solution within
a specified range and is useful when the expected behavior of the model is known a priori. We
set the bounds for the power-law model exponent a to be negative, in anticipation of a decaying
power-law relationship while the coefficient b was allowed to vary freely within positive values as:
bounds= ([−∞,0], [0,∞])

11.1 Double Factorial and Prime Divisibility 209

Figure 11.1: Exponential Law Fit for Cardinal Prime Double Factorial Ratio

Figure 11.2: Power Law Fit for Ordinal Prime Double Factorial Ratio

Nearest Integer Function

The concept of the nearest integer function denoted by ⌊x⌋ and ⌈x⌉ respectively is crucial for
evaluating the divisibility of factorials by prime powers. The floor function, ⌊x⌋, represents the
greatest integer less than or equal to x, while the ceiling function, ⌈x⌉, represents the smallest integer
greater than or equal to x. The motivation for introducing the nearest integer function, especially
the floor function, arises from the need to systematically count factors in factorial expressions. The
floor function is used in Legendre’s formula to count the number of occurrences of a prime p in the
prime factorization of n!, thereby aiding in the evaluation of divisibility by prime powers.

210 Chapter 11. Exageration

Legendre’s Formula and Divisibility

The divisibility of factorials by prime powers is systematically evaluated using the nearest integer
function, via the floor function in Legendre’s formula which efficiently counts the occurrences of a
prime p in the prime factorization of n!, and is given by:

vp(n!) =
⌊

n
p

⌋
+

⌊
n
p2

⌋
+

⌊
n
p3

⌋
+ . . .

Example: For n = 10 and p = 2, we see that 28 is the highest power of 2 dividing 10!:

v2(10!) =
⌊

10
2

⌋
+

⌊
10
22

⌋
+

⌊
10
23

⌋
= 5+2+1 = 8

For even n!!, we first express it as n!! = 2k · k!. For example, for n = 10 (hence k = 5), 10!! =
2 · 4 · 6 · 8 · 10 = 25 · 5!. Applying Legendre’s formula to 5!, the highest power of a prime p that
divides 5! is calculated as follows:

vp(5!) =
⌊

5
p

⌋
+

⌊
5
p2

⌋
+

⌊
5
p3

⌋
+ . . .

In this case, for p = 2, we get:

v2(5!) =
⌊

5
2

⌋
+

⌊
5
22

⌋
= 2+1 = 3

Adding the five 2’s from 25 (since 10!! = 25 ·5!), the total count of 2’s in 10!! is 5+3 = 8. Thus,
28 is also the highest power of 2 dividing 10!!. And indeed for p = 2, the highest power of 2 that
divides any n! and n!! is the same for even n. This is due to the fact that:

• For n!!, the term 2k accounts for the factors of 2 contributed by the even numbers.
• The remaining product, k!, and the full factorial, n!, share the sequence of numbers 1,2, . . . ,k,

meaning the factors of 2 in this part of the sequence are counted in both k! and n!.
• For even n, the structure of n! ensures that the additional even numbers beyond k contribute

exactly the factors of 2 that are accounted for by 2k in n!!.

The relationship can be visualized by plotting the highest power of p that divides n! and n!! for a
range of n. For even n and p = 2 the plots for n! and n!! coincide.

11.1 Double Factorial and Prime Divisibility 211

Figure 11.3: Legendre values for divisibility of n! and n!! by p=2,3,5,7

Calculating the highest power of 7 dividing 40!:
Using Legendre’s formula, we have:

v7(40!) =
⌊

40
7

⌋
+

⌊
40
72

⌋
= 5+0 = 5

So, the highest power of 7 dividing 40! is 75. Calculating the highest power of 7 dividing 40!!:
Now, since 40!! = 220 ·20!, we find the highest power of 7 dividing 20!:

v7(20!) =
⌊

20
7

⌋
+

⌊
20
72

⌋
= 2+0 = 2

So, the highest power of 7 dividing 40!! is 72. Now for odd n = 2k+1, the double factorial n!!
represents the product of all odd numbers up to n, which does not have a straightforward reduction
to a simpler factorial expression. Unlike the even case, there is no common factor we can extract
from each term, making the application of Legendre’s formula or similar methods less direct.

212 Chapter 11. Exageration

11.1.1 Euler, e as geometric mean of primes
e, as the base of the natural logarithm can also be represented as the very slowly converging limit
of a form of a geometric mean of i primes:

e ≈ lim
n→∞

(
n

∏
i=1

pi

)1/pn

= lim
i→∞

pi
√

pi# ≡ lim
i→∞

pi
√

pi## · pi−1##.

In this formulation we make sure to distinguish the cardinal-powering of the geometric" average
over an ordinal prime factorial pi#. To investigate this slowly converging limit, we will compute this
geometric mean for increasingly large i using the Python code, PlotEulerGeometricPrime.ipynb.

Figure 11.4: Euler’s constant as limit of Cardinal geometric mean of Prime Double Factorial

Our initial brute force approach might involve directly calculating the product of primes up to the
i-th prime and then raising this product to the power of 1/pi.

def approximate_euler_constant(n):
primes = [prime(i) for i in range(1, n + 1)]
e_approximations = []
for i in range(1, n + 1):

product_primes = np.prod(primes[:i])
e_approx = product_primes ** (1.0 / primes[i-1])
e_approximations.append(e_approx)

return e_approximations[-1]

While straightforward, this is not computationally stable as it involves the computation of very large
numbers. To optimize the computation, we use in PlotEulerGeometricPrime.ipynb the distributive
property of exponentiation (a · b)1/n = a1/n · b1/n taking the logarithm of each prime number,
summing these logarithms, and then exponentiating the result to avoid the avoid the overflow
problems1 associated with large products:

1In Python, floating point numbers are subject to limitations that arise from their digital representation, which includes
a sign, an exponent, and a fraction (significand). Overflow refers to a computation yielding a result beyond the largest
value that can be represented, ≈ 1.8×10308, leading to the result being marked as infinity ("inf"). Conversely, underflow
occurs with results too close to zero, under ≈ 5.0×10−324, causing them to be rounded to zero. Further calculations
with these values are unreliable. Additionally, the finite length of the significand means precision loss is inevitable during
operations, especially when aligning numbers for addition or subtraction, or when the product or quotient of numbers
contains more significant digits than can be accurately represented.

https://colab.research.google.com/drive/1xxZ7b3zagiiJq9Z2RJPS8NxjHxLBVwOV?usp=sharing
https://colab.research.google.com/drive/1xxZ7b3zagiiJq9Z2RJPS8NxjHxLBVwOV?usp=sharing

11.1 Double Factorial and Prime Divisibility 213

def approximate_euler_constant_using_logs(n):
primes = [prime(i) for i in range(1, n + 1)]
log_sum_primes = 0
e_approximations = []
for i in range(1, n + 1):

log_sum_primes += np.log(primes[i-1])
Compute the exponentiated average of the log values
e_approx = np.exp(log_sum_primes / primes[i-1])
e_approximations.append(e_approx)

Get the last approximation as the result
return e_approximations[-1]

11.1.2 Wilson’s Formula

Plotting (p−1)! mod p versus p gives the straight line graph, Figure ?? as implemented by the
following snippet

from sympy import primerange, factorial
primes = list(primerange(2, 10000))
Compute (p-1)! % p for each prime p
factorial_mod_p = [(p, factorial(p-1) % p) for p in primes]
Separate the list into two lists: x (primes) and y ((p-1)! % p)
x, y = zip(*factorial_mod_p)

plotWilsonModular.ipynb generates a list of prime numbers within a specific range using the
primerange function from the sympy library:

• Generate primes: P = {p | p is prime,2 ≤ p < 10000}.
• Compute (p−1)! mod p for each prime p ∈ P.
• Store the results in two lists: X = {p} and Y = {(p−1)! mod p}.

Figure 11.5: Wilson theorem

This is a picture of a result known as Wilson’s formula, which for an odd prime p states that

https://colab.research.google.com/drive/1fkhnNmQ5a2ZQCz733gjFUR8BELjyL_PC?usp=sharing

214 Chapter 11. Exageration

the residue of (p−1)! mod p is -1 :(p−1)! =−1 mod p For p = 13:

(p−1)! = (13−1)! = 12!

= 12 ·11 ·10 ·9 ·8 ·7 ·6 ·5 ·4 ·3 ·2 ·1 = 479001600

479001600 ≡−1 mod 13

It is though more illuminating and efficient computationally to deal with the congruences on the fly.
So again for p = 13, we compute (p−1)! mod p: (p−1)! = 1 ·2 ·3 ·4 ·5 ·6 ·7 ·8 ·9 ·10 ·11 ·12.
and calculate the product modulo p step by step:

≡(2 ·3 ·4 ·5 ·6 ·7 ·8 ·9 ·10 ·11 ·12) mod 13

≡(6 ·4 ·5 ·6 ·7 ·8 ·9 ·10 ·11 ·12) mod 13

≡(11 ·5 ·6 ·7 ·8 ·9 ·10 ·11 ·12) mod 13

≡(3 ·6 ·7 ·8 ·9 ·10 ·11 ·12) mod 13

≡(5 ·7 ·8 ·9 ·10 ·11 ·12) mod 13

≡(9 ·8 ·9 ·10 ·11 ·12) mod 13

≡(7 ·9 ·10 ·11 ·12) mod 13

≡(11 ·10 ·11 ·12) mod 13

≡(6 ·11 ·12) mod 13

≡(1 ·12) mod 13 =−1 mod 13

There is no such Wilson formula for a cardinal double factorial, p(n)##:

Figure 11.6: Lack of Wilson for p(n)##

For instance, to compute (11−1)## mod 11, we identify the prime numbers leading up to and
including the prime immediately preceding 11 (which is 7, the 4th prime). Now (11−1)## = 7##,
which is given by multiplying every second prime number in reverse order: 7## = 7 ·3 = 21. Now,
compute 21 mod 11 to show that (11−1)## ≡ 10 mod 11: 21 mod 11 = 10. The code snippet
delivering this is plotWilsonModular@@.ipynb

https://colab.research.google.com/drive/100T-hvx4-dwuyTwP0MNrlggpIrGe_28E?usp=sharing

11.1 Double Factorial and Prime Divisibility 215

def cardinal_factorial_with_lag(primes, p, lag):
if len(primes) < lag or p not in primes or primes.index(p) < lag:

return None
lagged_index = primes.index(p) - lag
return cardinal_factorial(primes, lagged_index)

The function cardinal_factorial_with_lag is designed to compute a variant of the factorial
for a list of ordered prime numbers, incorporating a user-specified lag:

• Input Parameters:
– primes: A list of prime numbers in ascending order.
– p: A prime number whose position in primes is of interest.
– lag: An integer indicating the number of positions before p to start the product

calculation.
• Functionality:

1. Validates that the primes list is sufficiently long, p is in primes, and p’s position is
greater than lag. Returns None or handles errors if conditions are not met.

2. Finds the index of the prime that is lag positions before p (denoted as lagged_index).
3. Calls a function cardinal_factorial, passing primes and lagged_index, to com-

pute the product of primes up to the prime at lagged_index.
4. Returns the result from cardinal_factorial.

Gamma function
The Gamma function extends the concept of factorials to include non-integer values and is defined
by the integral:

Γ(z) =
∫

∞

0
tz−1e−t dt, Re(z)> 0

For positive integers n, the Gamma function is related to the factorial function, satisfying:

Γ(n) = (n−1)!

The value of Γ
(3

2

)
is 1

2
√

π . For
(1

2

)
!:(

1
2

)
! = Γ

(
1
2
+1
)
= Γ

(
3
2

)
For (−1/2)!, we have:

(−1/2)! = Γ

(
−1

2
+1
)
= Γ

(
1
2

)
The value of Γ

(1
2

)
is known to be

√
π , therefore:

(−1/2)! =
√

π

We collate the relationships:

Γ

(
1
2

)
=
√

π(
1
2

)
! = Γ

(
3
2

)
Γ

(
3
2

)
=

(
1
2

)
Γ

(
1
2

)
=

1
2
√

π

216 Chapter 11. Exageration

We relate Γ(2),
(1

2

)
!, and ζ (2) through π as follows:

1. Relation between
(1

2

)
! and π:(

1
2

)
! =

1
2
√

π

2. Relation between Γ(2) and π:

Γ(2) =
3
2

Γ

(
3
2

)
=

3
2
· 1

2
√

π =
3
√

π

4

3. For the Basel problem solution ζ (2):

ζ (2) =
π2

6

For
(1

2

)
!:(
1
2

)
! = Γ

(
1
2
+1
)
= Γ

(
3
2

)

Γ

(
3
2

)
=

1
2

Γ

(
1
2

)
=

√
π

2

Interpolating between
(1

2

)
! and ζ (2), we observe the different ways in which π manifests in these

two expressions:(
1
2

)
! =

√
π

2
and ζ (2) =

π2

6

11.2 Historical Significance of Harmonic Series and Logarithms
The harmonic series, ∑

∞
n=1

1
n and the natural logarithm function, ln(n), have been central to mathe-

matical inquiry since the dawn of calculus and number theory. Their interrelationship is perhaps
most famously encapsulated in the study of the integral

∫ 1
x dx, which directly leads to the logarithm

function, bridging the gap between discrete and continuous mathematics:

∫ 1
x

dx = ln |x|+C

where C is the constant of integration defines the logarithm function but also highlights the
deep connections between algebraic structures and geometric areas, laying the groundwork for
much of modern analysis. The Euler-Mascheroni constant γ is defined as the limiting difference
between the harmonic series and the natural logarithm of n:

γ = lim
n→∞

(
− ln(n)+

n

∑
k=1

1
k

)
≈ 0.57721.

Discovered in the context of Euler’s work on the Basel problem and the Riemann zeta function, γ

intertwining discrete sums and continuous integrals. Similarly, the Meissel-Mertens constant M is
defined as the limit of the difference between the sum of the reciprocals of primes and ln(ln(n)), M
underscoring the nuanced distribution of prime numbers:

11.2 Historical Significance of Harmonic Series and Logarithms 217

M = lim
n→∞

(
− ln(ln(n))+ ∑

p≤n

1
p

)
≈ 0.261497

where p represents the prime numbers. The code, eulerMascerino.ipynb delivers both the limiting
sums of the irrationals

Figure 11.7: euler-Mascerino

11.2.1 Euler constant, e
The reflection formula for the Gamma function reads:

Γ(z)Γ(1− z) =
π

sin(πz)

Setting z = 1
2 , you get:

Γ

(
1
2

)2

= π

The harmonic numbers are defined as:

h(q) = 1+
1
2
+

1
3
+ . . .+

1
q

The Euler-Mascheroni constant γ is defined as the limiting difference between the harmonic
numbers and the natural logarithm:

γ = lim
q→∞

(h(q)− ln(q))

The Riemann Zeta function is defined for s > 1 as:

ζ (s) = 1+
1
2s +

1
3s + . . .

https://colab.research.google.com/drive/1Vzo8WWw0Lx1Ynm59KbLz95cld55uEHd8?usp=sharing

218 Chapter 11. Exageration

There is a relationship between ζ (s) and γ involving the alternating zeta function, also known as
the Dirichlet eta function η(s), where:

η(s) = 1− 1
2s +

1
3s − . . .

and η(s) is related to ζ (s) by:

η(s) = (1−21−s)ζ (s)

The Euler-Mascheroni constant γ can be expressed in terms of an infinite series involving ζ (s) for
integer values of s.

11.2.2 Double Factorial
For odd n:

n!! = 2
n−1

2

(n
2

)
!

n!! = 2
n−1

2 Γ

(n
2
+1
)

For even n:

n!! =
n!(n

2

)
!2n/2

n!! =
Γ(n+1)

Γ
(n

2 +1
)

2n/2

12. Irrational Analysis

While the familiar rationals and the enigmatic irrationals may seem to inhabit distinct realms, there
exist profound connections that bridge them. One of the most significant of these connections
is embodied in the Riemann Zeta function, a function that not only links rational numbers to
irrationals but also intertwines them with the distribution of prime numbers which is defined for
complex numbers s with a real part greater than 1 by the series

ζ (s) =
∞

∑
n=1

1
ns .

The Zeta function’s deep connection with prime numbers is revealed by the Euler product
formula, which expresses ζ (s) as an infinite product over primes p:

ζ (s) = ∏
pprime

1
1− p−s .

12.0.1 Bernoulli
The values of ζ (s) at positive even integers are rational multiples of π to a power, demonstrating
how a rational input leads to an output intimately tied to the irrational number π:

ζ (2n) = (−1)n+1 B2n(2π)2n

2(2n)!
,

where B2n represents the Bernoulli numbers.
The finite sum of even powers 1k +2k + . . .+nk for an even integer k can be expressed using

Bernoulli numbers B j as follows:

n

∑
i=1

ik =
1

k+1

k

∑
j=0

(
k+1

j

)
B jnk+1− j

220 Chapter 12. Irrational Analysis

Meanwhile, the infinite sum of reciprocals of even powers is related to the Bernoulli numbers
through the Riemann zeta function for even positive integers s:

ζ (s) =
∞

∑
n=1

1
ns =

(−1)
s
2−1(2π)sBs

2 · s!
, for even s > 1

These equations relate the finite sums of powers of integers with the infinite series of their
reciprocals for even powers, using the Bernoulli numbers as interpolators. The Bernoulli numbers
Bn are calculated using the following recursive formula, which is implemented in the provided
Python code:

Bn =− 1
n+1

n−1

∑
k=0

(
n+1

k

)
Bk, for n ≥ 1

where: - B0 = 1 is initialized at the start of the list B. - The sum ∑
n−1
k=0

(n+1
k

)
Bk is computed

within the nested for loop, iterating through all previously computed Bernoulli numbers (B[k]),
multiplying each by the binomial coefficient

(n+1
k

)
calculated using binomial(m + 1, k). - The

variable Bm accumulates the sum of these terms. Initially, Bm = 0. - After computing the sum, Bm
is updated to represent the n-th Bernoulli number by applying the formula Bm =−Bm/(m+1),
effectively isolating Bn on the left side of the equation. - This newly computed Bernoulli number
Bn is then appended to the list B.

This process repeats for each n from 1 up to the specified limit, thereby generating a list of
Bernoulli numbers.

The Python code snippet to compute Bernoulli numbers is as follows:

def compute_bernoulli_numbers(n):
B = [Rational(1)] # Initialize with B0 = 1
for m in range(1, n):

Bm = 0 # Initialize the sum
for k in range(m):

Bm += binomial(m + 1, k) * B[k] # Calculate the sum based on previous Bernoulli numbers
Bm = -Bm / (m + 1) # Adjust for the Bernoulli number formula
B.append(Bm)

return B

12.0.2 polynomials
k=1: n2

2− n
2 k=2: n3

3 − n2
2 + n

6 k=3: n4
4 − n3

2 + n2
4 k=4: n5

5 − n4
2 + n3

3 − n
30 k=5: n6

6 − n5
2 + 5n4

12 − n2
12 k=6: n7

7 − n6
2 + n5

2 − n3
6 + n

42 k=7: n8
8 − n7

2 + 7n6
12 − 7n4

24 + n2
12 k=8: n9

9 − n8
2 + 2n7

3 − 7n5
15 + 2n3

9 − n
30

12.1 Euler, e as a continued fraction 221

12.1 Euler, e as a continued fraction
Euler’s irrational constant, e ≈ 2.71828 . . ., is well-known for its natural occurrence in various
fields such as complex analysis, and number theory. Its most elegant representation is surely its con-
tinued fraction form, which allows for successive approximations to any desired level of accuracy.
The partial quotients of the con-
tinued fraction are separated from
its integer part, [e] = 2, as: e =
[2;1,2,1,1,4,1,1,6, . . .] where the se-
quence after the initial term of 2 follows
a pattern in which every third term, start-
ing from the second term, is an even
integer that can be represented as 2k,
where k is a positive integer. All other
terms in the sequence are 1.

e = 2+
1

1+
1

2+
1

1+
1

1+
1

4+
1

1+
. . .

In other words, for e = [2;a1,a2,a3, . . .] the sequence ai in the continued fraction are not a sequence
of denominators but rather a sequence of operations leading to the next fraction.

We use the function calculate_e(n_terms) from continuedConvergente.ipynb to initialize
the first two terms of the continued fraction and then iteratively append terms:

def calculate_e(n_terms):
terms = [2, 1]
Calculate the terms of the continued fraction up to n_terms
for n in range(2, n_terms):

if n % 3 == 2: # Every third term is 2k where k = 1,2,3,...
terms.append(2 * (n // 3 + 1))

else: # All other terms are 1
terms.append(1)

Start with the last term of the continued fraction
e_approx = Decimal(terms.pop())
Calculate the convergents by iteratively updating e_approx
while terms:

e_approx = terms.pop() + Decimal(1)/e_approx
return +e_approx

The construction of the convergents is from the innermost part of the fraction outwards. Starting
from the end of the computed continued fraction formula sequence, the function nests each term
within the fraction of the previous one and so for the sixth convergent it considers, the convergent
sum opposite.

calculate_e computes the continued fraction representation of e taking one argument,
n_terms, which specifies the number of terms to use and operates as follows:

1. The first two terms of the continued fraction are initialized in a list called terms.
2. A for loop calculates additional terms of the continued fraction based on a pattern and

appends them to the terms list.
3. The while loop by checking for the non-emptiness of the terms list then iteratively computes

the convergents from the last term to the first.
As long as there are terms left in the list, the loop continues to execute according to the pseudocode:

while terms is not empty:
remove the last term from terms
update the current approximation of e

https://colab.research.google.com/drive/1Mcdq2LmgXf0CRljdauAK3B9bTk5tUavw?usp=sharing

222 Chapter 12. Irrational Analysis

Inside the loop, the last term is em popped from the list and added to the reciprocal of the current
approximation, e_approx. Some more technical aspects in the code are the following:

• The unary plus operator, + in the final return statement applies the current context precision
to e_approx ensuring that the value of e is returned with the desired number of decimal
places as specified by the precision setting in the Decimal context.

• e_approx = Decimal(terms.pop()) initializes the approximation with the last term of
the continued fraction. This is because the continued fraction is built backwards, starting
from the last term and adding the reciprocal of the approximation to each preceding term.
The method pop() is used to remove and return the last element of the list terms and is a
standard operation in Python that modifies the list by removing the last item.

The code then generates a scatter plot that illustrates the convergence to e with an increasing
number of partial quotients.

Figure 12.1: Euler’s constant to increasing precision with

12.2 Pi 223

12.2 Pi
Below is an Ulam spiral of the 10,000 digits of pi starting in middle with 1. Highlighted is
999999, first run of six same consecutive numbers at 762nd position. π ×10762 is thus almost an
integer being π× circumference Universe ≈ π2 ×1026m in 21 times subdivisions of Planck length,
(10−35m

Figure 12.2: UlamSpiralPi

12.3 Continued fractions form of surds
Surds are reducible into integer multiples of prime surd parts allowing us to represent a composite
surd as a product of its prime surds,

√
24 =

√
4×

√
6 = 2

√
2
√

3. Given that any prime p may
be decomposed into a square and residual part, p = a2 +b its continued fractions (written in the
compact form,

√
p = [a;b,b,b, . . .]) provide an alternative representation for surds:

√
p =

√
a2 +b = a+

b

2a+
b

2a+
b

2a+ · · ·

. (12.1)

So for p = 2 = 12 +1 we have a continued fraction representation with five terms of:
√

2 = 1+
1

2+ 1
2+ 1

2+ 1
2

= 1.4142135623730951

Similarly for s =
√

164 = 2
√

41 with ,p = 41 = 62 +5 we have
√

164 = 2×{6+
5

12+ 5
12+ 5

12+ 5
12

}= 2×6.4031242374328485.

224 Chapter 12. Irrational Analysis

The code, continuedFractions-Latex.ipynb lists the primes with squares removed and their comple-
ments as per the table below.

n 4n+1 a b b mod a 4n+3 a b b mod a

1 5 2 1 1 7 2 3 1

2 - - - - 11 3 2 2

3 13 3 4 1 - - - -

4 17 4 1 1 19 4 3 3

5 - - - - 23 4 7 3

Table 12.1: The remainder of the first seven primes mod their largest square component

This is produced in 4n+14n+3a2+b.ipynb with the following essential snippet

def find_ab_for_prime(p):
Start with the largest integer less than sqrt(p)

a = int(math.sqrt(p))
while a > 0:

b = p - a**2
if b > 0:

return a, b
a -= 1

return None, None

The latex code for the continued fractions are produced in the following snippet

def continued_fraction_representation(a, b, max_terms):
terms = [a] + [2*a] * (max_terms-1)
Convert the terms to LaTeX format
latex_terms = str(terms[0]) + "+\\frac{" + str(b)
for term in terms[1:]:

latex_terms += "}{" + str(term) + "+\\frac{" + str(b)
latex_terms = latex_terms.rstrip("+\\frac{" + str(b))
latex_terms += "}" * (max_terms - 1)
return "\[\\sqrt{" + str(a**2 + b) + "} = " + latex_terms + "\]"

scatterplotbmodaPrimes.ipynb delivers the following scatterplot of b mod a versus p

https://colab.research.google.com/drive/10yWClCADYZzQQdLYllXD7m4WBmbZkJ1J?usp=sharing
https://colab.research.google.com/drive/1iijtscWenYWk5Hspqytvn7I8owOvml5-?usp=sharing
https://colab.research.google.com/drive/1uUmK7_ALOH-OrH59xR9eECKNrhdUTYpn?usp=sharing

12.3 Continued fractions form of surds 225

Figure 12.3: b mod a versus p = a2 +b.

def scatter_plot_data(limit_n):
rows = prime_table_upto_n(limit_n)
p_values_4n1 = []
remainders_4n1 = []
p_values_4n3 = []
remainders_4n3 = []
for row in rows:

if row[1] != "-":
p_values_4n1.append(row[1])
remainders_4n1.append(row[4])

if row[5] != "-":
p_values_4n3.append(row[5])
remainders_4n3.append(row[8])

return p_values_4n1, remainders_4n1, p_values_4n3, remainders_4n3

226 Chapter 12. Irrational Analysis

12.3.1 e and π as Continued Fractions

e = 2+
1

2×1+
1

2×2+
1

2×3+
1

2×4+
1

2×5+
1

2×6+
1

2×7+
1

2×8+1

The receding sum representation in LaTeX is:

e = [2;1,2×1,1,2×2,1,2×3,1,2×4,1,2×5,1,2×6,1,2×7,1,2×8,1]

π = 3+
1

6+
1

6+
1

6+
1

6+
1

6+
1

6+
1

6+
1
6
6

6

6

6

6

6

6

The receding sum representation in LaTeX is:

π = [3;6,6,6,6,6,6,6,6,6]

12.4 Square root difference of squares 227

12.4 Square root difference of squares
Our focus here is to consider the following sequence,

(
√

2−1)2 =
√

9−
√

8 = δ
′2
S , (12.2)

(
√

2−1)3 =
√

50−
√

49 =−δ
′3
S ,

(
√

2−1)4 =
√

289−
√

288 = δ
′4
S ,

in which we have defined the silver ratio δS ≡ 1+
√

2 and its conjugate, δ
′
S ≡ 1−

√
2 and ask how

we might go about determining the recursion relations for such a sequence. Our panda database is
initialized in DiophantineSquareSilverRatio.ipynb with calculated values for (

√
2−1)n for n = 0

through n = 4, based on using the coefficients of Pascal triangle according to the binomial theorem:
and looks like the

Figure 12.4: panda data frame with breakdown of powers of conjugate silver ratio

For n = 2, the binomial expansion is:

(
√

2−1)2 = (
√

2)2 +2(
√

2)(−1)+(−1)2 = 2−2
√

2+1 = 3−2
√

2

For n = 3, the binomial expansion is:

(
√

2−1)3 = (
√

2)3 −3(
√

2)2(1)+3(
√

2)(−1)2 − (−1)3

= 2
√

2−6+3
√

2−1 =−7+5
√

2

For n = 4, the binomial expansion is:

(
√

2−1)4 = (
√

2)4 −4(
√

2)3(1)+6(
√

2)2(−1)2 −4(
√

2)(−1)3 +(−1)4

= 4−8
√

2+12−4
√

2+1 = 17−12
√

2

12.4.1 Solving Recursive Relations via Linear Algebra
DiophantineSquareSilverRatio.ipynb gathers these initial calculations in a panda dataframe and
extends them using implied intertwining recursive relations recast from its contemporaneous form:

an = mn +an−1

mn = mn−1 +an−1

an = an−1 +2mn−1, (12.3)

mn = mn−1 +an−1,
so as to be written in matrix form whose solutions for λ in the determinant equation are:an

mn

=

1 2

1 1

an−1

mn−1

 . det

1−λ 2

1 1−λ

= 0,

https://colab.research.google.com/drive/1Zw9IZPx10D-95OLy1VtnuUcEsCM7wCAI?usp=sharing
https://colab.research.google.com/drive/1Zw9IZPx10D-95OLy1VtnuUcEsCM7wCAI?usp=sharing

228 Chapter 12. Irrational Analysis

This determinant and its simplification read as:

(1−λ)(1−λ)−2(1) = 0, λ
2 −2λ −1 = 0,

The eigenvalues are determined by solving this characteristic equation using symbolic computation:

from sympy import symbols, Eq, solve, sqrt, N
lambda_ = symbols(’lambda’)
char_eq = Eq(lambda_**2 - 2*lambda_ - 1, 0)
eigenvalues = solve(char_eq, lambda_)

or simply by completing the square

(λ −1)2 = 2,

λ1,2 = 1±
√

2,

corresponding to the silver ratio δS ≡
√

2+1 and negative its conjugate, −δ
′
S ≡−(

√
2−1).

General Solution for an and mn

Given any sequence {an} that follows specific recursive relations, we can express its general
solution in terms of the sequence’s eigenvalues. For eigenvalues of the matrix representation of the
recursive relations, λ1 and λ2, the general solution for the sequence a can be written as:

an = c1 ·λ n
1 + c2 ·λ n

2 ,

where c1 and c2 are constants determined by the initial conditions of the sequence. Given our initial
conditions a0 = 1 and a1 = 1, we establish a system of equations to solve for c1 and c2:

a0 = 1 : 1 = c1 · (1+
√

2)0 + c2 · (1−
√

2)0 = c1 + c2,

a1 = 1 : 1 = c1 · (1+
√

2)1 + c2 · (1−
√

2)1 = (c1 + c2)+
√

2(c1 − c2)

Similarly for the sequence mn, given the initial conditions m0 = 0 and m1 = 1, we solve for constants,
d1 and d2, that fit a similar general solution, mn = d1 ·λ n

1 +d2 ·λ n
2 , form:

m0 = 0 : 0 = d1 · (1+
√

2)0 +d2 · (1−
√

2)0 = d1 +d2,

m1 = 1 : 1 = d1 · (1+
√

2)1 +d2 · (1−
√

2)1 = (d1 +d2)+
√

2(d1 −d2).

These can be solved by equating rational and irrational parts or if that algebra is a stretch you can
compute these c1,c2,d1,d2 with generatingFunctionCharacteristic.ipynb:

c1, c2, d1, d2 = symbols(’c1 c2 d1 d2’)
eq1_a = Eq(c1 + c2, 1)
eq2_a = Eq(c1 * (1+sqrt(2)) + c2 * (1-sqrt(2)), 1)
eq1_m = Eq(d1 + d2, 0)
eq2_m = Eq(d1 * (1+sqrt(2)) + d2 * (1-sqrt(2)), 1)
solutions_a = solve((eq1_a, eq2_a), (c1, c2))
solutions_m = solve((eq1_m, eq2_m), (d1, d2))

which yields: ((c1: 1/2, c2: 1/2, d1: sqrt(2)/4, d2: -sqrt(2)/4)). That is:

c1 =
1
2
, c2 =

1
2
, d1 =

√
2

4
, d2 =−

√
2

4
.

https://colab.research.google.com/drive/1MbugBpEyNgBz1ZijqIhjD8SWZ9Fb0eGJ?usp=sharing

12.4 Square root difference of squares 229

So that the general solutions for the sequences {an} and {mn} are:

an =
1
2

(
1+

√
2
)n

+

(
1
2

)
·
(

1−
√

2
)n

,

mn =

√
2

4
· (1+

√
2)n −

√
2

4
· (1−

√
2)n.

For which to verify we note for n = 2:

a2 =
1
2

(
1+

√
2
)2

+

(
1
2

)
·
(

1−
√

2
)2

= 3,

m2 =

√
2

4
· (1+

√
2)2 −

√
2

4
· (1−

√
2)2 = 2,

which the snippet from generatingFunctionCharacteristic.ipynb with n = 2 confirms:

Define the symbol for lambda and the characteristic equation
lambda_ = symbols(’lambda’)
char_eq = Eq(lambda_**2 - 2*lambda_ - 1, 0)

Solve the characteristic equation for eigenvalues
eigenvalues = solve(char_eq, lambda_)
Define symbols for constants c1, c2, d1, d2
c1, c2, d1, d2 = symbols(’c1 c2 d1 d2’)

Equations for a_n and m_n based on given conditions
eq1_a = Eq(c1 + c2, 1)
eq2_a = Eq(c1 * eigenvalues[0] + c2 * eigenvalues[1], 1)
eq1_m = Eq(d1 + d2, 0)
eq2_m = Eq(d1 * eigenvalues[0] + d2 * eigenvalues[1], 1)

Solve the systems for a_n and m_n
solutions_a = solve((eq1_a, eq2_a), (c1, c2))
solutions_m = solve((eq1_m, eq2_m), (d1, d2))

def calculate_sequences(n, solutions_a, solutions_m, eigenvalues):
Extract solved values for c1, c2, d1, d2
c1_val, c2_val = solutions_a[c1], solutions_a[c2]
d1_val, d2_val = solutions_m[d1], solutions_m[d2]
lambda_1, lambda_2 = eigenvalues
Calculating numeric values using a_n and m_n constants, eigenvalues
a_n_formula = c1_val * lambda_1**n + c2_val * lambda_2**n
m_n_formula = d1_val * lambda_1**n + d2_val * lambda_2**n
a_n_value_numeric = N(a_n_formula)
m_n_value_numeric = N(m_n_formula)

return a_n_value_numeric, m_n_value_numeric

Our matrix representation of the recursive relation highlights the interconnectedness of algebra,
geometry, and number theory.
Noting now instead our original assertion, eq. ??, consider forPn+1 = Pn +1 that

(
√

2−1)n =
√

Pn+1 −
√

Pn,

https://colab.research.google.com/drive/1bvoIM1rXcRRJ1zrBmlc4AgTb3qf4TYG9?usp=sharing

230 Chapter 12. Irrational Analysis

we have that

(
√

2−1)n(
√

2−1)n = (
√

Pn+1 −
√

Pn)(
√

Pn+1 −
√

Pn),

= (
√

Pn+1
√

Pn+1)+
√

Pn
√

Pn −2
√

Pn
√

Pn+1,

so that (
√

2−1)2n = 2Pn +1−2
√

Pn
√

Pn+1,

Rearranging we have then that,

√
Pn
√

Pn+1 =
1
2

[
(1+2Pn)+(1−

√
2)2n

]
, (12.4)

Multiplying through by 2 and squaring this reads as

4Pn(Pn +1) = (1+2Pn)
2 +(1−

√
2)4n +2(1+2Pn)(1−

√
2)2n, (12.5)

Expanding that is,

4P2
n +4Pn = 1+4P2

n +4Pn +(1−
√

2)4n +2(1+2Pn)(1−
√

2)2n, (12.6)

Cancelling terms we have then that

1 = (
√

2−1)4n +2(1+2Pn)(
√

2−1)2n, (12.7)

Defining δ
′
S ≡ (

√
2−1) means our formula reads:

1 = δ
′2n
S +2δ

′n
S +4Pnδ

′n
S ,

Pn =
1

4δ
′n
S

(
1−δ

′2n
S −2δ

′n
S

)
.

The series discussed here is identified in OEIS (Online Encyclopedia of Integer Sequences)
under the entry A001108. Our code delivers the following scatterplot:

Figure 12.5: Intertwining coefficient sequence of difference of sequential square roots

Each point in the plot is labeled by p × q and color-coded based on the sign of p × q (red for
negative, blue for positive) reflecting the oscillating parity that arises from the recursion. To ensure
integer representation for p × q explicit formatting of the labels as integers is required in code.

https://oeis.org/A001108

12.5 Quadratic generator of silver ratio powers 231

12.5 Quadratic generator of silver ratio powers

The metallic numbers are a set of irrationals that are represented by the general quadratic equation

λ
2 −qλ −1 = 0,

where q is a positive integer whose solutions, the metallic ratios, are given by

q+
√

q2 +4
2

and
q−
√

q2 +4
2

.

The most well-known metallic numbers include:
• The Golden Ratio (φ): q = 1, yielding λ 2 −λ −1 = 0 with positive solution

φ =
1+

√
5

2
.

• The Silver Ratio (δs): q = 2, yielding λ 2 −2λ −1 = 0 with positive solution

δs = 1+
√

2.

• The Bronze Ratio (δb): q = 3, yielding λ 2 −3λ −1 = 0 with positive solution

δb =
3+

√
13

2
.

The quadratic equations that describe δ n
s and δ ′n

s . We note for example:
• δ 1

s arises from λ 2 −2λ −1 = 0
• δ 2

s = (
√

2+ 1)2, we find δ 2
s =

√
2+ 2

√
2+ 1 = 3+ 2

√
2 with corresponding quadratic

equation derived from [λ − (3+2
√

2)][λ − (3−2
√

2)] = λ 2 −6λ +1.
• δ 3

s , δ 3
s = (

√
2+1)3 simplifies to 7+5

√
2 to yield the quadratic equation λ 2 −14λ −1,

• δ 4
s results in λ 2 −34λ +1 = 0.

We note the constant term c alternating between +1 and −1, and the coefficient b = 2a.

Figure 12.6: Quadratics that generate powers of silver ratio

Our goal is to generalize this process for higher powers of δs, identifying the coefficients of the
resulting quadratic equations using symbolic computation to validate the hypothesis that b = 2a.

232 Chapter 12. Irrational Analysis

12.6 Golden Ratio Quadratic Coefficients as Lucas Numbers

The powers of the golden ratio and their conjugates can similarly form a basis for generating a
sequence of quadratic expressions with intriguing numerical properties. By using the symbolic
computation library SymPy, we define the symbolic variable λ and employ the symbols, expand,
sqrt, and Poly functions to construct and analyze the quadratic equations.

from sympy import symbols, expand, sqrt, Poly
lambd = symbols(’lambda’)

def generate_golden_quadratic(n):
phi = (1 + sqrt(5)) / 2
phi_conjugate = (1 - sqrt(5)) / 2
phi_power = phi**n
conjugate_power = phi_conjugate**n
quadratic = expand((lambd - phi_power) * (lambd - conjugate_power))
return quadratic

Generate quadratic equations and extract the coefficients
coefficients_list = []
for n in range(2, 12):

quadratic = generate_golden_quadratic(n)
poly = Poly(quadratic, lambd)
coefficients = -poly.all_coeffs()[1] # Coefficient of lambd
coefficients_list.append(coefficients)
print(f"Quadratic for n={n}: {quadratic}")

The core of our procedure is the function generate_golden_quadratic, which computes the
n-th power of the golden ratio and its conjugate. These powers are then used to form quadratic
equations by expanding the product (λ −φ n)(λ −φ ′n), for φ ′ the conjugate of the golden ratio.

Upon generating the quadratic equations for powers n = 2 to n = 11, our code extracts the
coefficients of the λ term which are [3,4,7,11,18,29,47,76,123,199]:

Figure 12.7: Quadratics that generate powers of golden ratio

The Lucas sequence (Ln) is defined by the recurrence relation Ln = Ln−1 +Ln−2 with initial
terms L0 = 2 and L1 = 1 and then 2,1,3,4,7,11,18,29, Binet provides an explicit expression
for the n-th term of the Lucas sequence Ln = φ n +(1−φ)n, where φ = 1+

√
5

2 is the golden ratio,
and 1−φ is its conjugate which comparing to our derived quadratic expressions means we can
assert:

λ
2 − (2an)λ −1 = 0,

in which the coefficients an of the linear follow the Lucas sequence with an =
Ln
2 .

https://colab.research.google.com/drive/1Oj4iQDwmLMT34XzmB5VlRhq0aWCHLtVw?usp=sharing

12.7 Metallic Rationals 233

12.7 Metallic Rationals

R When you are next idly asked by an astro-planing believer for your favourite number, request
for clarification: rational or irrational. For rational why would you not offer up 10/89?

Our objective here is to deconstruct a tweet by @potetoichiro that suggests a bit of spooky
numerology in which the Fibonacci series form the lead numbers at each placeholder for the partial
sums of the rational 10/89 suggesting other metal reside near by:

Figure 12.8: The golden rational of 10/89

The snippet from generic10m9FibonacciGeneration.ipynb generates the partial sum sequences for
metal ratios and the following violin graph

def generate_metallic_sequence(n, q, initial_values):
sequence = initial_values.copy()
while len(sequence) < n:

sequence.append(sequence[-2] + q * sequence[-1])
return sequence

n_terms = 10 # Number of terms to generate
golden_sequence = generate_metallic_sequence(n_terms, 1, [1, 1])

Figure 12.9: The place contributions of the first three metallic rationals

The violin plot provides a composite visualization, combining aspects of a box plot with a kernel
density estimation. The width of each violin is proportional to the density of data points at each
level of the “Decimal Equivalent”, which allows for the immediate assessment of the distribution’s

https://twitter.com/potetoichiro/status/1390317537267650563?s=20
https://colab.research.google.com/drive/1OuI7W84iZYw2ncVOie5v6LfQCrCGV-cm?usp=sharing

234 Chapter 12. Irrational Analysis

modality and variance. The overlay of individual data points, plotted as a strip plot, gives insight
into the actual distribution of values within each metallic mean category, exposing the concentration
of data and potential outliers. Notably, their absences of data points in certain regions of the violins.

This implementation is initiated by defining a color palette within the Python environment,
which maps the categorical data of metallic means to a corresponding color as the palette is
instantiated as a dictionary with keys ’Golden’, ’Silver’, and ’Bronze’, associated with the colors
’gold’, ’silver’, and a hexadecimal color code representing bronze, respectively. Seaborn, a
statistical data visualization library built on top of matplotlib, is utilized to construct the violin
plot. The violinplot function is invoked with parameters to plot the ’Metal’ category on the
x-axis and the ’Decimal Equivalent’ on the y-axis. The data source is specified as the filtered
DataFrame df_all_filtered, with the plot’s scale and bandwidth fine-tuned through the ’scale’
and ’bw’ arguments, respectively. In concert with the violin plot, a stripplot is generated to
overlay the individual data points, providing granular visibility into the dataset’s distribution. The
color ’k’ (black) is selected for the points, with a semi-transparent alpha value and jitter applied to
enhance clarity and avoid overlapping. Subsequent to the plot’s creation, matplotlib’s yscale
function is employed to transmute the y-axis into a logarithmic scale, effectively compressing the
extensive range of the data into a more interpretable form. The axis limits are explicitly set to span
from 10−8 to 10−1, encompassing the full breadth of the dataset’s magnitude.

Connection between Fibonacci Generating Function and Binet’s Formula

A generating function is a power series in which the coefficients of the terms encode information
about a sequence of numbers, {αn} as:

G(λ) =
∞

∑
n=0

αnλ
n

The recurrence relation Fn = Fn−1+Fn−2, with initial conditions F0 = 0 and F1 = 1 has a generating
function encapsulating its Fibonacci sequence within a finite expression:

G(λ) =
λ

1−λ −λ 2 (12.8)

whose denominator can (as we have seen) be factored using the roots, φ and its conjugate ψ = 1−
√

5
2

of the characteristic equation associated with the Fibonacci sequence: those solutions to the equation
λ 2 −λ −1 = 0. We can express G(λ) in terms of partial fractions explicitly involving φ and ψ:

G(λ) =
λ

(1−φλ)(1−ψλ)
=

A
1−φλ

+
B

1−ψλ
,

in which A and B are found by multiplying both sides by the denominator on the left side to give:

λ = A(1−ψλ)+B(1−φλ).

Upon setting λ = 1
φ

this reads (since φ −ψ =
√

5) as 1
φ
= A

(
1− ψ

φ

)
⇒ A = 1√

5
.

Similarly, setting λ = 1
ψ

yields B =− 1√
5

gives our partial fraction as:

G(λ) =
1√
5

(
1

1−φλ
− 1

1−ψλ

)
. (12.9)

12.7 Metallic Rationals 235

Expanding each term into a geometric series using the expansion formula:

1
1− rλ

=
∞

∑
n=0

(rλ)n. we have:
1

1−φλ
=

∞

∑
n=0

(φλ)n,
1

1−ψλ
=

∞

∑
n=0

(ψλ)n.

Substituting these expansions back into the expression, (12.9) gives us:

G(λ) =
1√
5

(
∞

∑
n=0

(φλ)n −
∞

∑
n=0

(ψλ)n

)
.

Now since φλ and ψλ are both raised to the power of n in their respective series, we combine them
in a power series :

G(λ) =
1√
5

∞

∑
n=0

(φ n −ψ
n)λ

n ≡
∞

∑
n=0

Fnλ
n.

in which the coefficient of λ n is the nth Fibonacci number, represented by Binet’s formula:

Fn =
φ n −ψn
√

5
.

Substituting λ = 1
10 into (12.8), we obtain:

G
(

1
10

)
=

1
10

1− 1
10 −

(1
10

)2 =
1
10

1− 1
10 −

1
100

=
1

10
100
100 −

10
100 −

1
100

=
1
10
89

100

=
10
89

.

Exercise 12.1 The reader is invited to discover the rational number that embodies the Tribonacci
series, by adpating the solver below. ■

from sympy import symbols, solve, Eq
x = symbols(’x’)
equation = Eq(x / (1 - x - 1*x**2), 10/89)
solution = solve(equation, x)
solution

Sequence Types and Their Generating Functions
For convenience we summarize the recurrence relations and generating functions for the Silver and
Bronze Ratios, as well as for the Tribonacci and Lucas Numbers, in the following table:

For the silver ratio, substituting λ = 1
10 into its generating function:

GS

(
1
10

)
=

1/10
1−1/10−2(1/10)2

yields a decimal expansion that aligns with the silver ratio sequence. Although not as straight-
forward as the Fibonacci sequence, it similarly results in a patterned expansion reflective of its
sequence.

Similarly, for the bronze ratio, substituting λ = 1
10 into its generating function:

GB

(
1
10

)
=

1/10
1−1/10−3(1/10)2

{https://colab.research.google.com/drive/1pTgTGhaXg4ESoKNizuZxEe-f8U8Kp-ls?usp=sharing}SolveQuadratic.ipynb

236 Chapter 12. Irrational Analysis

Sequence
Type Recurrence Relation Generating Function

Golden Ratio Fn = Fn−1 +Fn−2;F0 = 0, F1 = 1 GF(λ) =
λ

1−λ−λ 2

Silver Ratio an = an−1 +2an−2 GS(λ) =
λ

1−λ−2λ 2

Bronze Ratio an = an−1 +3an−2 GB(λ) =
λ

1−λ−3λ 2

Tribonacci Tn = Tn−1 +Tn−2 +Tn−3 GT (λ) =
λ

1−λ−λ 2−λ 3

Lucas Num-
bers

Ln = Ln−1 +Ln−2; L0 = 2, L1 = 1 GL(λ) =
2−λ

1−λ−λ 2

Table 12.2: Sequence Types by Recurrence Relations and Generating Functions

results in a decimal expansion that reflects the bronze ratio sequence. Like the silver ratio, the
bronze ratio sequence creates a unique pattern in its decimal expansion.

Note: The actual numeric decimal expansions for the silver and bronze ratios would require
specific calculations based on their generating functions. The sequences generated by these ratios,
while not directly translating to simple decimal representations as the Fibonacci sequence does in
10
89 , still exhibit interesting mathematical properties worth exploring.

12.8 Metallic Unit Area Right Triangles
In the proper spirit of recreational mathematics we will consider the set of right triangles with a unit
area formed of suitably scaled metallic numbers and their conjugates. Given a right triangle with

Figure 12.10: Metallic Triangles of Unit Area with shining Silver example

sides scaled by the metallic number (
√

p+1)n and its conjugate (
√

p−1)n, where p is a prime
number and n is an integer, we define the sides as:

side_a = r · (√p+1)n, side_b = r · (√p−1)n.

The area A = 1 of the triangle is given by:

A =
1
2
· side_a · side_b =

1
2
· r2 · (√p+1)n · (√p−1)n = 1.

12.8 Metallic Unit Area Right Triangles 237

which simplifies to:

r =
√

2 ·

√
1

(p−1)n .

For n = 1,2, and 3, the solutions for r are respectively:

r1 =
√

2 ·

√
1

p−1
, r2 =

√
2 ·

√
1

p2 −2p+1
, r3 =

√
2 ·

√
1

p3 −3p2 +3p−1
.

The scaling factor r maintains the unit area for all prime numbers p and integer values of n,
highlighting an intrinsic property of metallic numbers in the construction of such triangles.

Given a prime number p, we define the sides of the triangle using scaled metallic numbers and
their conjugates, whose short-sided lengths are determined as follows:

side_a =

√
2
(

p+1−2
√

p
p−1

)
, side_b =

√
2
(

p+1+2
√

p
p−1

)
,

and whose hypotenuse h is calculated as follows:

h =

√
2
(

p+1−2
√

p
p−1

)
+2
(

p+1+2
√

p
p−1

)
.

Their smallest angle θ is derived from the tangent ratio:

tan(θ) =
p+1−2

√
p

p+1+2
√

p
,

with θ in radians obtained via θ = atan(tan(θ)), θrad = N(θ), θin π = θ

π
.

Figure 12.11: Metallic Triangles of Unit Area with shining Silver example

We use symbolic mathematics libraries with key operations including:
• The simplify function to streamline expressions,
• The atan function to calculate the arctangent of the angle,
• The N function to normalize the angle in radians.
Figure 12.12 is a scatterplot in which the small angle θ in radians is plotted against prime

number p. Each point is labeled with the value of the hypotenuse of the corresponding right triangle.
From the scatterplot, we observe:
• The small angle θ increases with the prime number p.
• The rate of increase in θ seems to diminish as p gets larger, suggesting a logarithmic-like

relationship between θ and p.
Each point on the scatter plot is labelled by converting the hypotenuse expression to a string and
formatting by replacing "sqrt" with the Unicode symbol and removing unnecessary characters.

238 Chapter 12. Irrational Analysis

Figure 12.12: Scatterplot of the Small Angle θ vs Prime Number p

13. Unlikely Unreality of the Ramadunjan being Number

The relationship between the Ramanujan constant R and the expressions involving the limit of
prime roots and the basic Bernoulli number of the Basel problem are discussed. The Basel problem
as first posed by Pietro Mengoli in 1644 was to find the exact value of the sum

∞

∑
n=1

1
n2 =

1
12 +

1
22 +

1
32 + · · · (13.1)

and later was solved by Leonhard Euler in 1735, who showed that

∞

∑
n=1

1
n2 =

π2

6
. (13.2)

Euler’s solution involves the use of the zeta function ζ (s), which is defined as

ζ (s) =
∞

∑
n=1

1
ns . (13.3)

Using the zeta function, we can express the sum in terms of ζ (2):

∞

∑
n=1

1
n2 = ζ (2). (13.4)

The Ramanujan constant R is defined as

R = eπ
√

163. (13.5)

We have

240 Chapter 13. Unlikely Unreality of the Ramadunjan being Number

√
163π =

√
163×6ζ (2) (13.6)

so the Ramanujan constant R is:

R = e
√

163×6ζ (2) = lim
n→∞

n

√
∏
p≤n

p

√
163×6ζ (2)

(13.7)

The second expression uses the fact that e = limn→∞
n
√

∏p≤n p, which relates the limit of prime
roots to the constant e.

The Basel problem is closely related to the Bernoulli numbers through the zeta function via the
formula

ζ (−n) =−Bn+1

n+1
, (13.8)

for n ≥ 1, where Bn is the nth Bernoulli number. This formula relates the values of the Riemann
zeta function at negative integers to the Bernoulli numbers. In particular, we have

ζ (−1) =−B2

2
=− 1

12
. (13.9)

where Bn is the nth Bernoulli number. This formula can be used to express ζ (s) as a sum over
the Bernoulli numbers:

ζ (s) =
1

1−21−s

∞

∑
n=0

Bn

n!
(2π)s, (13.10)

Using this formula, we can express ζ (2) in terms of the Bernoulli numbers as

ζ (2) =
π2

6
=

1
1−2−1 ·

B2

2!
(2π)2 =

B2

6
. (13.11)

The solution to the Basel problem involves the second Bernoulli number. The Riemann zeta
function is related to the Bernoulli numbers through the following formula:

ζ (n) =
∞

∑
k=1

1
kn =

(−1)n−1Bn

2n
, (13.12)

where Bn is the nth Bernoulli number. So, for example, we have:

ζ (2) =
π2

6
=

(−1)2−1B2

2×2
, (13.13)

which gives B2 =
1
6(π

2). Similarly, we have:

ζ (−2) =− 1
12

=
(−1)(−2)−1B−2

2× (−2)
, (13.14)

241

which gives B−2 =− 1
12 . Note that the formula for Bn only holds for even n, so there is no such

formula for odd-indexed Bernoulli numbers.
The Bernoulli numbers up to B8 expressed in terms of the Riemann zeta function are:

B0 = 1

B1 =−1
2

B2 =
1
6
(ζ (−2)−1)

B3 = 0

B4 =− 1
30

(
ζ (−4)+ζ (−2)− 5

2

)
B5 = 0

B6 =
1
42

(
ζ (−6)−ζ (−4)+ζ (−2)− 1

2

)
B7 = 0

B8 =− 1
30

(ζ (−8)+ζ (−6)−ζ (−4)+ζ (−2)−1)

Since ζ (2) = π2

6 and B0 = 1,B1 = 0,B2 =
1
6 the Ramanujan constant is related to the Bernoulli

numbers as

π =
√

6ζ (2) =
√

6
π√
2 ·2

· B2

2!
, (13.15)

Then, using this formula, we can rewrite the Ramanujan constant as

R = e
√

163π = e
√

6·163ζ (2) = e
√

6 π√
2·2 ·

B2
2! (π/

√
2)2

. (13.16)

14. The ABC Conjecture

We will look here into the key concepts behind this conjecture, exploring the rationale behind the
notion of the radical of a prime factorization and the significance of co-prime triplets involved in
the a+b = c conjecture.

Definition 21 Radical Factorization Consider a composite number n and its prime factorization
into distinct primes p1, p2, . . . , pk. The radical of n, denoted as rad(n), is the product of these
distinct prime factors, i.e., rad(n) = p1 · p2 · · · pk.

The significance of the radical lies in its ability to measure the "magnitude" of numbers in
a unique way. It serves as an essential tool in our quest to unravel the mysteries of the ABC
conjecture.

14.1 The co-prime ABC Triplet

Now, picture three positive whole numbers a, b, and c that satisfy the equation a+b = c. These
numbers form what we call an ABC triplet. However, the triplet is more than just a random
assortment of digits; it possesses a remarkable property - coprimality.

The co-prime numbers are those that share no common factors other than 1. In other words, the
greatest common divisor (GCD) of any two co-prime numbers is equal to 1. For an ABC triplet
(a,b,c), we have gcd(a,b) = gcd(a,c) = gcd(b,c) = 1. This property makes co-prime triplets
particularly intriguing and is a crucial aspect of the ABC conjecture.

14.2 The ABC Conjecture

The ABC conjecture, formulated by Joseph Oesterlé and David Masser in 1985, posits a relationship
between the three components of an ABC triplet. It states that for any ε > 0, there exists a constant
Kε such that for every ABC triplet (a,b,c) with a+b = c, the following inequality holds:

c < Kε · rad(abc)1+ε

244 Chapter 14. The ABC Conjecture

In simpler terms, the conjecture suggests that the sum c of the two co-prime numbers a and b
cannot be much larger than the radical of their product abc. If proven true, the ABC conjecture
would have profound implications for number theory, with consequences reaching far beyond its
original formulation.

14.2.1 Radical of a Number
To unpack this a little more let’s talk about the radical of a number. Imagine we have a composite
number, and we prime factorize it into its basic building blocks (prime numbers). Now, the radical
of this composite number is the product of all its distinct prime factors. For example, the radical of
20 is 2 × 5 = 10, as it is the product of the distinct prime factors 2 and 5.

Why do we care about the radical of a number, you ask? Well, it turns out that the radical
plays a crucial role in understanding the ABC conjecture. It helps us measure the "magnitude" of
numbers and their relationships in a unique way, and you’ll see why this matters soon!

14.2.2 The co-prime ABC Triplet
Now, picture this: three numbers - ’a,’ ’b,’ and ’c’ - hanging out together in an equation of the form
’a + b = c.’ These numbers are not just any random digits; they have some special properties. For
starters, they are positive whole numbers, and even more interestingly, they are co-prime!//

Hold up, co-prime? Don’t worry; it’s not as complicated as it sounds. co-prime simply means
that ’a,’ ’b,’ and ’c’ share no common factors other than 1. In other words, their greatest common
divisor (GCD) is 1. For example, the triplet (2, 3, 5) is co-prime because the GCD of 2, 3, and 5 is
1. They have no other common divisors. But the triplet (4, 6, 10)? Not co-prime! The GCD of 4, 6,
and 10 is 2.

So, why do we focus on co-prime triplets for the ABC conjecture? Well, that’s where the real
magic lies! co-prime triplets are like hidden gems in the vast landscape of numbers. They give us
insight into the mysterious connections between numbers, and the ABC conjecture takes us on a
quest to explore these connections further.

The ABC conjecture has spurred a multitude of research in number theory and sparked various
related conjectures and results. It remains an open problem, and mathematicians continue to make
significant strides in their pursuit of understanding the mysteries of numbers. Be prepared to
encounter a treasure trove of elegant proofs, intricate theorems, and surprising connections between
seemingly unrelated mathematical concepts. Happy exploring.

III
15 Combinatorics . 249
15.1 Sam Lloyd Problem
15.2 Placing Distinct Balls In distinguishable Boxes
15.3 Statistical Ensembles
15.4 Optimisation models
15.5 The Secretary Problem
15.6 The Enigma Machine and its Plugboard Feature
15.7 Number of Triangles on an n×n Grid
15.8 Linear Algebra and Dimensional Analysis

16 Giving a Toss . 289
16.1 Win Loss Frequency
16.2 Win-Loss distribution of Coin-Tossing
16.3 Sticking it to Pascal
16.4 Coin Toss clustering on a table

17 Integer Lattice problems 299
17.1 Surd diagonals drawn on a lattice
17.2 Circumscribing polygons
17.3 Circumscribing and Inscribing Polygons
17.4 Perimeter-to-Area Ratio
17.5 Tournaments in Directed Graphs
17.6 Triangles inscribed in Circles
17.7 spiralling
17.8 chapter end notes

18 Diophantine Equations 317
18.1 Using Bezout’s Identity to Solve Diophantine Equa-

tions

19 Determination . 323
19.1 Pythagorean Triples
19.2 Hyperbolic Construction of Pythagorean Triples
19.3 Congruent Numbers and Square-Free Conditions

20 Combinatorial Differential geoemetry 341

Bibliography . 343
Books
Articles

Index . 345

Part Three: Higher Altitude
Explorations

247

12-winLossFrequency

15. Combinatorics

If you cannot solve the proposed problem
do not let this failure afflict you too much

but try to find consolation with some easier success,
try to solve first some related problem;

then you may find courage to attack your original problem again.
— G. Poyla , How to Solve it [14]

15.1 Sam Lloyd Problem

The Lloyd problem, often referred to as the 15-puzzle, presents a fascinating challenge in combina-
torial mathematics and the world of recreational puzzles. At first glance, the problem might seem
simple: you’re given a square board partitioned into 16 smaller squares, where 15 of these squares
have numbered tiles from 1 to 15 and one remains empty. The goal is to rearrange these tiles to get
them in ascending order by only sliding tiles into the empty space.

Naive Implementation

A legitimate shuffle ’round1 is presented below given the initial configuration presented to the user
with the 14th and 15th tiles interchanged.

Figure 15.1: Sam Loyd 15-Shuffle boards illustrating a shuffle round.

1SamLloydOneShuffle.ipynb delivers this picture.

https://colab.research.google.com/drive/14-oSGvADjK2CcLBtyhDkugfXXQSwuKgZ?usp=sharing

250 Chapter 15. Combinatorics

You might at first naively try to replicate the challenge by simply drawing numbers without
replacement and observing the configurations that arise. However, such an approach does not
truly reflect the nature of the puzzle as borne out by the mixed parity (odd and even) nature of the
Disorder numbers associated with these two random configurations.

Figure 15.2: Naive Loyd 15-Shuffle based on random 1-15 draw.

So the Disorder of a number sequence measures how many pairs of elements are out of their
expected ascending order. More formally,

Definition 22 Disorder Given a sequence S of n distinct numbers, the “Disorder” D(S) of the
sequence is defined as the number of pairs (S[i],S[j]) such that i < j but S[i]> S[j].

Mathematically, this can be represented as:

D(S) =
n−1

∑
i=1

n

∑
j=i+1

I(S[i]> S[j])

Where:
• I is an indicator function such that:

I(true) = 1

I(false) = 0

• n is the length of the sequence.
• S[i] is the ith element of the sequence.

For a sequence sorted in ascending order, D(S) will be 0. The greater the value of D(S), the further
the sequence is from being sorted. For example, consider the list [4,3,2,1] in which we have a total
disorder of 6 given by:

• (4,3), (4,2), and (4,1) are out of order.
• (3,2) and (3,1) are out of order.
• (2,1) is out of order.

For a sorted list (either ascending or descending), the disorder will be 0. The larger the returned
value, the more pairs in the list are out of their expected order if the list were to be sorted in
ascending order.//

15.1 Sam Lloyd Problem 251

The function calculate_disorder(numbers) within the code2delivers disorder:

def calculate_disorder(numbers):
disorder = 0
for i in range(len(numbers)):

for j in range(i + 1, len(numbers)):
if numbers[i] > numbers[j]:

disorder += 1
return disorder

that calculates and returns the "disorder" of a list of numbers which is the count of how many
pairs of numbers in the list are out of order, i.e., how many pairs (i, j) exist such that i < j and
numbers[i] > numbers[j] by:

1. Initialize the disorder count to 0.
2. Iterate through each number in the list using an index i.
3. For each i, iterate through the subsequent numbers in the list using index j.
4. For every pair (numbers[i],numbers[j]) where numbers[i] > numbers[j], increment

the disorder count.
5. Return the final count of disorder.

The function draw_puzzle(n), create and prints the series of random 4x4 number puzzles:

def draw_puzzle(n):
summary = []
disorders = []
for count in range(n):

numbers = list(range(1, 16))
random.shuffle(numbers)
print(f"Square {count + 1}:")
for i in range(4):

for j in range(4):
index = 4 * i + j
if index == 15:

print(" ", end=" ")
else:

print(f"{numbers[index]:2d}", end=" ")
print()

1. It initializes two empty lists: summary and disorders, although these lists are not used
within the provided code.

2. For each iteration from 0 to n−1, the function:
(a) Creates a list, numbers, consisting of integers from 1 to 15.
(b) Shuffles the numbers list randomly.
(c) Prints the header Square count + 1.
(d) Iterates through a 4x4 grid and:

• For the last grid cell (bottom-right), it prints two spaces.
• For all other cells, it prints the corresponding number from the shuffled list.

(e) After every row of 4 numbers, a new line is printed.
The result is a series of n shuffled 4x4 number squares where the bottom-right cell is always empty,
naively simulating a sliding puzzle.

2naiveSamlLloyd-wrong.ipynb

https://colab.research.google.com/drive/1J6rNww0mSs-Spj9h3pMHW0EoWUpQHVVN?usp=sharing

252 Chapter 15. Combinatorics

In the genuine Lloyd problem, the empty space, located at the bottom right, has a unique role.
During the course of the game, this space is allowed to move around, facilitating the rearrangement
of the numbered tiles. However, at the end of each shuffle, the empty space must return to the
bottom right position, thus constraining the possible configurations one can achieve. Loyd’s Fifteen
puzzle using Hamilton’s notion of a network circuit is explored in Benson’s, ’Moment of Proof’
[2]. In it he lays out on full the proof of Loyd’s money being safe. The natural order of the integers
1-15 denotes the normal increasing order. Arrangements of the numbered tiles contain each integer
1-15 exactly once but not in the natural order.

A list is said to be odd or even depending on whether the total number of inversions of the list
is odd or even. An inversion is a pair of number in the list (not necessarily adjacent) that are not in
the natural order. The extent of the disorder of the list with respect to the natural order is called
the "disorder" counting the number of inversions in the list. Arrangements of the 15 puzzle are
said to be odd or even depending on whether the associated list is odd or even. Disorder serves
as an invariant property of the configuration. Thus if we were to physically swap tiles 14 and 15,
no amount of allowed shuffles would get us to a configuration where the tiles are arranged in an
ordered sequence from 1 to 15. This is due to a shift from an odd parity disorder to an even parity
disorder. In other words, the total number of moves required to get from a given configuration back
to the ordered sequence is either always even or always odd. This peculiarity ensures that not all
configurations are solvable and why Loyd was able to offer a $1000 prize reward to anyone doing so.

Config Linear Configuration Disorder Number

5002 3,6,4,8 | 5,1,2,7 | 14,13,10,12 | 9,11,15,− 26

5003 1,3,4,7 | 5,10,2,8 | 9,14,6,11 | 13,15,12,− 18

5004 1,2,8,3 | 6,7,4,11 | 5,9,15,10 | 13,14,12,− 18

5005 5,2,12,3 | 6,1,4,8 | 11,7,14,15 | 10,9,13,− 28

5006 9,3,5,6 | 10,4,11,7 | 2,1,8,12 | 13,14,15,− 30

Table 15.1: Even parity configurations of the Loyd puzzle

An allowable genuine shuffle with disorder number looks like the following.

Figure 15.3: Loyd 15 shuffle using shuffle function.

15.1 Sam Lloyd Problem 253

The following functions work together to allow for a randomized, solvable configuration of the
15 puzzle, starting from a solved state with the empty cell in the bottom-right corner implementing
allowable shuffling mechanisms for the 15 puzzle:

def valid_moves(empty_index):
moves = []
row, col = divmod(empty_index, 4)
if row > 0:

moves.append(empty_index - 4)
if row < 3:

moves.append(empty_index + 4)
if col > 0:

moves.append(empty_index - 1)
if col < 3:

moves.append(empty_index + 1)
return moves

def shuffle_board(board, moves_count):
empty_index = 15
for _ in range(moves_count):

move = random.choice(valid_moves(empty_index))
board[empty_index], board[move] = board[move], board[empty_index]
empty_index = move

while empty_index != 15:
move = random.choice(valid_moves(empty_index))
board[empty_index], board[move] = board[move], board[empty_index]
empty_index = move

return board

valid_moves(empty_index): returns a list of indices corresponding to the tiles that can be
moved into the empty space. It determines which tiles can be moved to the empty space with
the 4x4 grid visualized as a linear list of length 16, where the index of the empty cell is given
by empty_index. Using the row and column information derived from this index:

• If the empty cell is not in the top row, the tile above can slide down.
• If the empty cell is not in the bottom row, the tile below can slide up.
• If the empty cell is not in the leftmost column, the tile on the left can slide right.
• If the empty cell is not in the rightmost column, the tile on the right can slide left.

shuffle_board(board, moves_count): shuffles the puzzle by performing a series of valid
moves.

1. The empty cell’s index is initialized to 15 (the bottom-right corner).
2. For a specified number of moves (moves_count), a valid move is randomly selected,

and the chosen tile is swapped with the empty space.
3. An additional loop ensures that the empty space is moved back to its initial position

(index 15). This ensures that the empty space remains in the bottom-right corner after
shuffling.

Measures of Rank coefficients

Both Spearman Rank and Kendall’s Tau provide a measure of rank correlation and are designed to
measure ordinal association. They provide insight into the ordinal structure of the data, rather than
precise positional differences.

254 Chapter 15. Combinatorics

Definition 23 The Spearman Rank correlation coefficient, ρ , assesses the strength and direction
of the monotonic relationship between two ranked variables. It is computed as:

ρ = 1− 6∑d2
i

n(n2 −1)

where di is the difference between the two ranks of each observation and n is the number of
observations.

Motivation: Spearman Rank is motivated by the need to determine the degree of association
between two ordinal or ranked variables. It can be seen as a non-parametric version of the Pearson
correlation.

Definition 24 Kendall’s Tau, denoted as τ , is a measure of rank correlation. It calculates the
difference between the number of concordant and discordant pairs divided by the total number
of pairs. It is given by:

τ =
nc −nd

n(n−1)/2

where nc and nd are the number of concordant and discordant pairs, respectively, and n is
the number of observations.

Motivation: Kendall’s Tau is motivated by the need for a measure that can handle ties in data
and does not assume a linear relationship between the variables. It is useful when the data is ordinal.

Women’s Vault Competition Judging with Multiple Judges
Consider three gymnasts: A, B, and C with scores based on the evaluation of three different judges
combined from Difficulty (D-Score) and Execution (E-Score) components:

Gymnast Judge 1 (Total) Judge 2 (Total) Judge 3 (Total)

A 14.4 14.5 14.3

B 14.5 14.4 14.4

C 14.3 14.3 14.2

Judge 1’s Ranking: B > A >C

Judge 2’s Ranking: A > B >C

Judge 3’s Ranking: B = A >C

We can calculate the Spearman, Kendall Tau, and Disorder measures for each pairwise comparison
between judges (Judge 1 vs. Judge 2, Judge 1 vs. Judge 3, and Judge 2 vs. Judge 3).

Judge 1 vs. Judge 2
The rank differences di for gymnasts A, B, and C are respectively 1, -1, and 0. Using Spearman’s
rank correlation coefficient formula, we have a correlation between Judge 1 and Judge 2 of 0.5:

ρ = 1− 6∑d2
i

n(n2 −1)
= 1− 6(2)

3(8)
= 0.5

For each possible pair of gymnasts, we have:

15.1 Sam Lloyd Problem 255

• For the pair (A, B): Judge 1 ranks B before A, while Judge 2 ranks A before B (discordant).
• For the pair (A, C): Both judges rank A before C (concordant).
• For the pair (B, C): Both judges rank B before C (concordant).

From this, we find Kendall’s Tau between Judge 1 and Judge 2 is 1
3 as:

Concordant pairs (C) = 2 Discordant pairs (D) = 1 τ =
C−D
C+D

=
1
3

Counting the pairs that are not in the same order for both judges, we have a total disorder between
Judge 1 and Judge 2 of 1 as (A, B) are in a different order.

Judge 1 vs. Judge 3

Given the rank differences for gymnasts A, B, and C, which are 0.5, -0.5, and 0 respectively, the
Spearman’s rank correlation coefficient is ρ = 1− 3

24 = 0.875

• A and B are ranked equally or with the same difference by both judges.
• A-C and B-C pairs are concordant between Judge 1 and Judge 3.

leads Kendall’s Tau correlation between Judge 1 and Judge 3 of τ = C−D
C+D = 2−0

2 = 1 There’s no
disorder between Judge 1 and Judge 3’s rankings as both rank C last and A, B as tied or with the
same difference. Total disorder = 0.

Judge 2 vs. Judge 3

Given the rank differences for gymnasts A, B, and C, which are -0.5, 0.5, and 0 respectively, the
Spearman’s rank correlation coefficient is again ρ = 1− 3

24 = 0.875

• A and B have no specific order between Judge 2 and Judge 3.
• A-C and B-C pairs are concordant between Judge 2 and Judge 3,

for a Kendall’s Tau between Judge 2 and Judge 3 of τ = C−D
C+D = 2−0

2 = 1 There’s no disorder
between Judge 2 and Judge 3’s rankings as both rank C last and A, B as tied or with the same
difference.

So from these statistical measures we may conclude that, Judges 1 and 2 have notable differences
in their rankings, suggesting a potential divergence in their evaluation criteria. On the other hand,
Judges 1 and 3, and especially Judges 2 and 3, have a high degree of agreement, suggesting a
common understanding or criteria for evaluation.

Discriminating Puzzle Configurations

In the context of the 15 puzzle, it has been observed that for given disorder numbers, there can be
equivalent values for the Spearman Rank and even more so for Kendall’s Tau correlation coefficients.
This brings forth the question of whether these ranking coefficients can comprehensively discrim-
inate between distinct positions of the puzzle. While both coefficients can indicate whether the
puzzle configuration is closer or farther from the solution in terms of ordinal structure, they might
not capture the nuanced differences between two distinct, yet similarly structured, configurations.
Two different configurations might have similar or even identical rank structures, leading to high
correlation values, even if the actual tile positions differ.

While statistical measures such Spearman Rank and Kendall’s Tau can provide further insights
into the ordinal nature of the 15 puzzle configurations, they are by design not granular enough
to discriminate between every unique configuration. The code subplotsHistScatterDisorderSpear-
man.ipynb delivers both a histogram of Disorder numbers and correlation analysis

https://colab.research.google.com/drive/1FlwfS08OUaf38kD_lBgTjDG4RvkIxrGE?usp=sharing
https://colab.research.google.com/drive/1FlwfS08OUaf38kD_lBgTjDG4RvkIxrGE?usp=sharing

256 Chapter 15. Combinatorics

Figure 15.4: Spearman rank and Kendall tau ranking coefficients as possible unique Disorder
measures.

def draw_puzzle(n, moves_count):
disorders = []
kendalls = []
spearmans = []
summaries = PrettyTable([’Config #’, ’Linear Configuration’, ’Disorder’, ’Kendall\’s Tau’, ’Spearman Rank’])
seen_configs = set()
i = 0
while i < n:

board = list(range(1, 16)) + [’-’]
shuffle_board(board, moves_count)
config_tuple = tuple(board)
if config_tuple in seen_configs:

continue
seen_configs.add(config_tuple)
disorder = calculate_disorder(board[:-1])
disorders.append(disorder)
kendall_corr, _ = kendalltau(board[:-1], range(1, 16))
spearman_corr, _ = spearmanr(board[:-1], range(1, 16))
kendalls.append(kendall_corr)
spearmans.append(spearman_corr)
formatted_order = ’, ’.join(map(str, board))
summaries.add_row([i + 1, formatted_order, disorder, round(kendall_corr, 2), round(spearman_corr, 2)])
i += 1

The function draw_puzzle(n, moves_count) constructs a table summarizing the disorder and
correlation metrics of up to n unique shuffled configurations of the 15 puzzle, ensuring no repeated
configurations. Here’s a detailed breakdown of its functionality:

1. Three lists, disorders, kendalls, and spearmans, are initialized to store metrics about
each generated configuration.

2. A table summaries is initialized with the columns ‘Config #‘, ‘Linear Configuration‘, ‘Dis-
order‘, ‘Kendall’s Tau‘, and ‘Spearman Rank‘ using the PrettyTable module.

3. A set, seen_configs, is used to keep track of previously generated configurations, ensuring
that duplicate configurations are not considered.

4. Using a while loop, up to n unique configurations are generated. For each configuration:

15.1 Sam Lloyd Problem 257

(a) A solved board configuration is created as a list with numbers 1 to 15, followed by an
empty space represented by ‘-‘.

(b) The board is then shuffled using the previously mentioned shuffle_board function.
(c) The configuration is checked against the seen_configs set. If it has been seen before,

the loop continues to the next iteration without incrementing the counter.
(d) Metrics are then calculated for this unique configuration:

• The disorder (as described in previous explanations) of the configuration.
• The Kendall’s Tau correlation coefficient compared to a solved configuration.
• The Spearman Rank correlation coefficient, again compared to a solved configu-

ration.
(e) These metrics, along with the linear representation of the board, are then added as a

new row to the summaries table.
(f) The counter i is incremented.

258 Chapter 15. Combinatorics

15.2 Placing Distinct Balls In distinguishable Boxes
We aim to calculate the number of arrangements A(r,n) where we have more distinguishable balls r
than distinguishable boxes such that r ≥ n. The recursive relation for these arrangements is given
by:

A(r,n) =
r

∑
k=1

(
r
k

)
A(r− k,n−1)

Where the
(r

k

)
represents the combination of choosing k elements from r. To get a sense of

where this comes from imagine we have r distinct books that we want to arrange on n distinct
shelves, represented by A(r,n).

• Combinations: The term
(r

k

)
represents choosing k books from r. By choosing k books, we

decide which subset of our books will be placed on the first shelf.
• Recursive Arrangement: The term A(r − k,n− 1) represents the ways to arrange the

remaining r− k books on the n−1 remaining shelves.
• Summation: Summing over all k values considers all possible numbers of books for the first

shelf, then recursively calculates the arrangements for the remaining books.

Figure 15.5: 27 ways of placing 3 distinguishable balls in 3 distinguishable boxes.

This visualization 15.5 displays the 24 distinct ways that distinguishable balls can be arranged
in distinct boxes, revealing at first the n!/nn probability of delivering only one ball in one box (in
adherence to a Pauli-exclusion principle that forbids a box from accommodating more than one ball.
Our code visualizes the different arrangements of distinguishable balls in distinguishable boxes.
An arrangement in this context means the different ways the balls can be placed in the boxes.

• Combinations: Refers to the selection of items without considering the order.
• Permutations: Refers to the arrangement of items where the order is essential.
• Arrangement: A general term used here to describe both the above scenarios, including

cases where multiple balls can be placed in a single box.

15.2 Placing Distinct Balls In distinguishable Boxes 259

15.2.1 Code Workflow
The Python code from snippet is as follows:

def generate_combinations(balls, boxes_count):
generate permutations of balls for

cases where there is exactly one ball in each box
permutations = list(itertools.permutations(balls))

Convert to format used by draw_combination
perms_converted = []
for perm in permutations:

converted = [[] for _ in range(boxes_count)]
for idx, ball in enumerate(perm):

converted[idx].append(ball)
perms_converted.append(converted)

generate all other possible distributions
distributions = list(itertools.product(range(1, boxes_count+1), repeat=len(balls)))
dist_converted = [[] for _ in range(len(distributions))]
for dist_idx, dist in enumerate(distributions):

for ball_idx, box in enumerate(dist, 1): # Start enumeration at 1
dist_converted[dist_idx].append((str(ball_idx), box))

1. First, the code calculates the permutations of balls for the specific case where there’s
precisely one ball in each box. This ensures every box has a single, distinguishable ball.

2. After obtaining the permutations, the code generates the different distributions (or arrange-
ments) of the balls among the boxes.

3. The distributions include scenarios where multiple balls can be present in a single box. This
is achieved using the Cartesian product, effectively mapping balls to box indices.

4. The code then filters out previously computed permutations from these distributions to avoid
redundancy.

5. Once the arrangements are generated, they are visualized using ‘matplotlib‘ with each box
and ball represented graphically.

15.2.2 Generator formulae for r balls in n boxes
The generator formula, A(r,n) = ∑

r
k=1
(r

k

)
A(r− k,n−1), encapsulates selecting subsets of books

(combinations) and then arranging the remaining books across multiple shelves.
Consider the interplay of combinations and permutations in the formula which considers all

ways to distribute r books across n shelves, accounting for empty shelves.

constituents =
n

∑
k=0

(−1)k
(

n
k

)
(n− k)r

• (−1)k: Introduces alternating signs, a theme in combinatorial arguments.
•
(n

k

)
: Represents choosing k shelves from n to be left empty.

• (n− k)r: Expresses the permutations of arranging r books on n− k shelves.
The code recurciveArrangementsOfrinn.ipynb has the following features

• Memoization: An optimization technique used to speed up recursive algorithms. It involves
storing solutions to overlapping subproblems to avoid redundant computations.

https://colab.research.google.com/drive/1TRbWfucxs38bJ9W7Fggooj1VeVNW6LUn?usp=sharing
https://colab.research.google.com/drive/1sUWnQZpAGjxa6qYGkmANQFH3BqyHiIge?usp=sharing

260 Chapter 15. Combinatorics

• Python’s comb module: The ‘comb‘ function from the ‘math‘ module is used to compute
combinations.

• List comprehensions: Used extensively in Python to generate lists without the need for
appending to a list in a loop. It provides a concise way to create lists.

from math import comb, factorial
memo = {}
Recursive formula for A(r, n)
def A_recursive(r, n, display=False):

if (r, n) in memo:
return memo[(r, n)]

if r < n:
return 0

if n == 1:
return 1

if r == n:
return factorial(r)

Recursive calculation
constituents = [(comb(r, k), A_recursive(r - k, n - 1)) for k in range(1, r + 1)]
total = sum([c[0] * c[1] for c in constituents])

Displaying each calculation (if display is True)
if display:

for k, c in enumerate(constituents, start=1):
print(f"{c[0]} x A({r - k}, {n - 1}) = {c[0] * c[1]}")

memo[(r, n)] = total
return total

The function ‘Arecursive‘ calculates A(r,n) using recursion and memoization. If the solution
for a specific (r, n) pair is already computed, it fetches it from the memoization dictionary ‘memo‘
to avoid redundant computations.

The output from the code for r=6, n=4, A(6,4) is:

C(6,1)×A(5,3) = 6×150 = 900

C(6,2)×A(4,3) = 15×36 = 540

C(6,3)×A(3,3) = 20×6 = 120

C(6,4)×A(2,3) = 15×0 = 0

C(6,5)×A(1,3) = 6×0 = 0

C(6,6)×A(0,3) = 1×0 = 0

Using the fixed generator formula, A(6,4) = ∑
r
k=0(−1)k ×C(4,k)× (4− k)6 we have

(−1)0 ×C(4,0)× (4−0)6 = 4096

(−1)1 ×C(4,1)× (4−1)6 =−2916

(−1)2 ×C(4,2)× (4−2)6 = 384

(−1)3 ×C(4,3)× (4−3)6 =−4

(−1)4 ×C(4,4)× (4−4)6 = 0

Both return A(6,4) = 1560.

15.3 Statistical Ensembles 261

15.3 Statistical Ensembles

Between the Thermodynamic Macrostate of a system described in rough terms by Molar amount,
Internal energy, U or notions of Pressure (phenotypes) and the innumerable microstates comprising
N distinguishable particles all of which could characterise such a rough description there exists the
Thermal Equilibrium Distribution. For a simple assembly,??GuenaltStat] consider the following
Macrostate comprising N=4 distinguishable particles labelled A,B,C and D. with total energy,
U = 4ε . The question is what are the possible states of any one particle, the solution being
states of (non degenerate) energies 0,ε,2ε,3ε, ... labelled j = 0,1,2, .. with ε j = jε We define the
distributions as {n j}, with j = 0,1,2,3.., and noting that any allowable distributions must satisfy

∑
j

n j = 4;∑
j

ε j = 4ε

Consider the five possible distributions

Distribution n0 n1 n2 n3 n4 n5 ...

1 3 0 0 0 1 0 ...

2 2 1 0 1 0 0 ...

3 2 0 2 0 0 0 ...

4 1 2 1 0 0 0 ...

5 0 4 0 0 0 0 ...

Table 15.2: A Distribution of A,B,C and D

A microstates specifies the state of each of the four particles. In order to count their number
consider the possibilities:

1. A is in state j = 4; while B, C, and D are in state j = 0.
2. B is in state j = 4; while A, C, and D are in state j = 0.
3. C is in state j = 4; while A, B, and D are in state j = 0.
4. D is in state j = 4; while A, B, and C are in state j = 0.

Distribution 1 (t1 = 4) microstates:
1. A in state j = 4; B,C,D in state j = 0
2. B in state j = 4; A,C,D in state j = 0
3. C in state j = 4; A,B,D in state j = 0
4. D in state j = 4; A,B,C in state j = 0

Distribution 2 (t2 = 12) microstates:

n1 = 1 and n4 = 1:
1. A in state j = 1; B in state j = 4; C,D in state j = 0
2. B in state j = 1; C in state j = 4; A,D in state j = 0
3. . . .

n0 = 2 (the rest of the particles are in state j = 0):
1. A,B in state j = 0; C,D in other states
2. . . .

262 Chapter 15. Combinatorics

Distribution 3 (t3 = 6) microstates:
n2 = 2:

1. A in state j = 2; B in state j = 2; C,D in state j = 0
2. . . .

n0 = 2 (the rest of the particles are in state j = 0):
1. A,B in state j = 0; C,D in other states
2. . . .

Distribution 4 (t4 = 12) microstates:
n1 = 2 and n3 = 1:

1. A,B in state j = 1; C in state j = 3; D in state j = 0
n0 = 1 (the rest of the particles are in other states):

1. A in state j = 0; B,C,D in other states

Distribution 5 (t5 = 1) microstates:
1. A,B,C,D in state j = 4

Hence t1 = 4 for
The code, microstatesEquivalentOfDistributions.ipynb for Distribution 3 returns: t3 = 6 mi-

crostates for Distribution 3:
1. (′0′,′ 2′,′ 2′,′ 0′)
2. (′2′,′ 0′,′ 2′,′ 0′)
3. (′0′,′ 2′,′ 0′,′ 2′)
4. (′2′,′ 0′,′ 0′,′ 2′)
5. (′2′,′ 2′,′ 0′,′ 0′)
6. (′0′,′ 0′,′ 2′,′ 2′)

The crucial function is the following

from itertools import permutations
For each distribution, generate all unique permutations of states (microstates)
for idx, distribution in enumerate(distributions):

microstates = set(permutations(distribution))
total_microstates = len(microstates)
Add the total number of microstates for the current distribution to Omega.
Omega += total_microstates
print(f"t{to_superscript(idx+1)}={total_microstates} microstates for Distribution {idx+1}:")
for microstate_idx, microstate in enumerate(microstates):

print(f" Microstate {microstate_idx+1}: {microstate}")
print()

1. Iterate over each distribution in the list distributions.
2. For the current distribution, generate all unique permutations of its states. These permutations

are termed microstates.
3. Compute the total number of microstates for the current distribution.
4. Increment the variable Ω by the total number of microstates for the current distribution.
5. Print the total number of microstates for the current distribution, labeling it with a superscript

notation:

t(idx+1) = total_microstates

where idx is the current index of the distribution.
6. For each microstate in the set of microstates, print the microstate.

https://colab.research.google.com/drive/1Tq7rwcZj5aNWacIjgQIbqnJViI37kqKw?usp=sharing

15.4 Optimisation models 263

15.4 Optimisation models

Optimization problems often require effective strategies to find the best solution within a vast
search space. Key concepts in this area include evaluation functions, hill climbing, and simulated
annealing, each playing a critical role in navigating towards optimal solutions.

Evaluation Function: At the heart of many optimization algorithms is an evaluation function,
a mathematical tool used to assess the quality or fitness of a given solution. In the context of spin
systems, for instance, this function might calculate the number of runs of consecutive arrows with
the same orientation. The higher the number of such runs, the better the configuration is considered,
thereby guiding the search process.

Hill Climbing: Hill climbing is an iterative optimization algorithm that starts with an arbitrary
solution and makes small changes to it. If the change results in a better solution as per the
evaluation function, the algorithm moves to this new solution. This process continues until no
further improvements can be made. However, hill climbing can get trapped in local maxima –
points that are better than their immediate neighbors but not the best overall. These algorithms use
an evaluation function to decide whether to move to a neighboring state or not, based on its relative
quality.

Simulated Annealing: To address the limitations of hill climbing, simulated annealing intro-
duces a probabilistic approach. Inspired by the metallurgical process of annealing, this method
uses a "temperature" parameter to determine the likelihood of accepting worse solutions. Initially,
when the temperature is high, the algorithm is more likely to accept sub-optimal solutions, allowing
it to explore more of the solution space and potentially escape local maxima. As the tempera-
ture decreases, the algorithm becomes more conservative, honing in on the best solution found.
This temperature-dependent approach provides a balance between exploration and exploitation,
increasing the chances of finding a global maximum.

Toy Ising Spin Model
In statistical physics, spin models are used to understand magnetic properties of materials. One of
the most famous models is the Ising model, which describes the interaction of spins on a lattice
where each spin interacts with its neighbors and has been pivotal in studying phase transitions and
understanding critical phenomena. The Monte Carlo method, is a powerful tool for studying the
Ising model, especially near critical points where analytical solutions are not feasible. Although our
simulation does not include an external field, the concept of spins changing direction is fundamental
to understanding paramagnetic materials.

Our Monte Carlo simulation focuses on a simple system of spins, represented by arrows
pointing either up or down capturing the essence of spin models, in which each spin can be in one
of two states: up (+) or down (-). The simulation randomly reverses the spins of adjacent arrows,
mimicking the thermal fluctuations in real magnetic systems.

Figure 15.6: Spin UP and Spin Down manoeuvres.

The sinippet from the codemonteArrowIsing.ipynb draws the arrows

https://colab.research.google.com/drive/1x6TGJ69UAjg3T6xZTsn09ny6-H_Y7NvQ?usp=sharing

264 Chapter 15. Combinatorics

def draw_arrows(spins, ax, offset=0, swap_indices=None):
for i, spin in enumerate(spins):

pos_x = i + offset # Apply offset for horizontal positioning
color = ’black’ # Default color
Change color if this arrow is part of the swapped pair
if swap_indices and i in swap_indices:

color = swap_indices[2] # third element in swap_indices tuple is color
Draw the arrow
if spin == ’+’:

ax.arrow(pos_x, 0.1, 0, 0.8, head_width=0.2, head_length=0.2, fc=color, ec=color)
else:

ax.arrow(pos_x, 0.9, 0, -0.8, head_width=0.2, head_length=0.2, fc=color, ec=color)
Text is always below the arrow
ax.text(pos_x-0.05, -0.3, str(i+1), color=color)

Spin Representation
We represent spins as a series of arrows, initially set in a specific order. The spins are denoted as ’+’
for up and ’-’ for down. The core of our simulation is the Monte Carlo method, which randomly
selects and reverses adjacent spins. This method reflects the random nature of thermal fluctuations
in magnetic systems.The Python script uses matplotlib to draw arrows corresponding to each spin
state. The arrows are colored differently at each step to track the changes over time. The script
generates a histogram of the number of turns required to reach a specific end configuration.

Figure 15.7: Number of manoeuvres of arrows to have them aligned in parallel and anti-parallel
fashioned .

15.5 The Secretary Problem 265

15.5 The Secretary Problem

The secretary problem, also known as the marriage problem or the sultan’s dowry problem, demon-
strates a scenario of optimal stopping theory. The problem was originally formulated during the
1950s and 1960s and involves a decision-making process where an interviewer aims to hire the best
secretary out of n applicants, who are interviewed one by one in a random order. The interviewer
must decide immediately after each interview whether to hire the applicant or not, and the decision
is irrevocable. The goal is to maximize the probability of selecting the best applicant. With more
modern sensibilities, it can be seen as applicable to a variety of situations like real estate, online
dating, and any scenario where one must choose the best option without the ability to return to
previous choices.

In the secretary problem, the objective is to maximize the probability of selecting the best
candidate from a sequentially ordered set of candidates. The optimal stopping rule suggests that the
best time to make a decision is after evaluating approximately 1

e of the candidates, where e is the
base of the natural logarithm. The 1

e threshold, or the optimal stopping rule strategy maximizes
the probability of choosing the best option and is grounded in the balance between having enough
information to make an informed decision and the risk of passing up the best choice and offers the
best chance of making the optimal choice in a scenario where options are presented sequentially
and decisions are irrevocable.

There is a similarity between the optimal stopping rule in the secretary problem and the
evaluation function used in hill-climbing optimization algorithms. As such the evaluation function
is a comparison process that assesses whether a current candidate is better than all previously
evaluated ones.

15.5.1 Exploration and Exploitation

The phase before reaching the 1
e threshold in the secretary problem can be likened to the exploration

phase in hill-climbing, where one gathers information about the environment. After this threshold,
the decision phase begins, similar to the exploitation phase in hill-climbing, using the information
gathered earlier to make the best decision. The code, chooseSecretary.ipynb delivers for an
interview panel of 9 an initial exploration pool of 3 from which happily the best candidate presents
2 candidates after the observation pool: Enter the size of the pool of secretaries (p): 9
Shuffled list of ranks: [3, 6, 2, 8, 1, 5, 7, 9, 4]
Revealed so far: [3, 6, 2]
Revealed so far: [3, 6, 2, 8, 1]
Remaining list: [7, 9, 4]

15.5.2 Automated Secretary Problem with Optimal Stopping

Monte Carlo simulations are used to show the surprising optimality of the stopping routine. The
automated code version implements the optimal stopping rule, stopping after evaluating the first n

e
candidates, where e is the base of the natural logarithm. This rule is based on the theory that after
seeing about 36.8% of the applicants, the interviewer has enough information to make an informed
decision about the rest. Consider the secretary problem with a pool of 28 candidates.

https://colab.research.google.com/drive/1sUdriYtPZu3uVE37VnhU-0NTF56lXnLL?usp=sharing
https://colab.research.google.com/drive/1n-0XvTACRNY1PohkyO-riTmk2aK3cEsP?usp=sharing

266 Chapter 15. Combinatorics

Figure 15.8: Histogram of rankings of final choices in Secretary Problem

Analysis of Iterations
Iteration 2
In the second iteration, the best candidate in the initial observation phase was ranked 8. During the
subsequent decision phase, the algorithm evaluated candidates with ranks [17, 27, 22, 23, 2]. It
stopped at the fifth candidate in this phase (overall 15th candidate), who had a rank of 2, better than
the best candidate from the initial phase.

Iteration 3
The third iteration saw the best candidate in the initial phase with a rank of 1. After this phase, the
algorithm reviewed candidates with ranks [2, 10, 27, 4, 24, 11, 5, 23, 12, 28, 3, 25, 16, 8, 17, 22, 21,
20]. The decision to stop was made at the 28th candidate, who had a rank of 20. This decision was
made at the end of the candidate list as no candidate surpassed the best rank of 1 from the initial
phase.

Iteration 4
In the fourth iteration, the best-ranked candidate during the initial phase was 7. The subsequent
phase included candidates with ranks [24, 1]. The algorithm stopped at the second candidate in this
phase (overall 12th candidate), who was ranked 1, surpassing the initial phase’s best rank. These
iterations demonstrate the variability in the stopping decisions based on the ranks of candidates
encountered. The algorithm adapts its decision based on the best rank found in the initial observation
phase and the ranks of subsequent candidates.

15.6 The Enigma Machine and its Plugboard Feature 267

Figure 15.9: Heat gradient Scatter plot of rankings of final choices versus number of interviews in
Secretary Problem

15.5.3 Balancing Exploration and Exploitation

The 1
e threshold represents an optimal balance between exploration and exploitation, akin to

determining the right moment in hill-climbing when one should stop exploring and start exploiting.
It’s important to note the inherent differences between the two problems. The secretary problem
involves a fixed sequence and irrevocable decisions, whereas hill-climbing allows for more flexible
exploration and the possibility of backtracking.

We highlight here the importance of balancing information gathering with decision making, a
principle applicable in various fields of problem-solving and optimization.

15.6 The Enigma Machine and its Plugboard Feature

The Enigma machine, a cryptographic device employed extensively by Nazi Germany during World
War II, is one of the most iconic cipher machines in the history of cryptography. Designed as a rotor
cipher machine, the Enigma was capable of transposing each letter inputted into another letter via a
series of rotors and reflectors. Each rotor had 26 possible positions corresponding to the 26 letters
of the alphabet, and these rotors would step forward with each keystroke, providing a changing
encryption with every letter typed.

268 Chapter 15. Combinatorics

One of the defining features of the Enigma machine, and the one we focus on here, was its
plugboard (known as the Steckerbrett in German). The plugboard acted as a preliminary layer of
transposition before the electrical current of the keyed-in letter proceeded to the rotors. It consisted
of a series of sockets, each corresponding to a letter of the alphabet. These sockets could be pairwise
connected using cables. If, for instance, the letters A and B were connected via the plugboard, then
pressing A would send a current that, at this initial stage, was rerouted as if B had been pressed,
and vice versa.

Now, [21] if one were to consider a scenario where only a subset of the available plug holes
were used, the question arises: How many different configurations are possible given a certain
number of cables? Consider such a task of selecting m pairs from n objects. The following logic
can be employed to derive the formula for this:

1. Choosing the first pair: For the first object in the pair, we have n choices. Once the first
object has been selected, for the second object in the pair we have n−1 choices. Therefore,
the total number of ways to choose the first pair is n(n−1).

2. Choosing subsequent pairs: For the first object in the second pair (after two objects have
already been used for the first pair), there are n−2 choices left. For its partner in the pair,
n−3 choices remain. This gives (n−2)(n−3) ways to choose the second pair after the first.
This pattern continues for subsequent pairs.

Given this approach, the total number of ways to choose m pairs is:

n(n−1)(n−2)(n−3) . . .(n−2m+2)(n−2m+1)

However, since the order in which we select the pairs doesn’t matter (i.e., selecting the pairs AB
and CD is the same as CD and AB), we must divide by m!. Additionally, because the order within
each pair also doesn’t matter (i.e., AB is the same as BA), we must further divide by 2m to account
for the 2 possible orders in each of the m pairs. Thus, the formula to compute the number of ways
to select m pairs from n objects is:

n!
(n−2m)!m!2m

For the Enigma’s plugboard, with n = 6 holes and m = 3 cables, the formula we have

6!
(6−6)!3!23 =

6!
0!3!8

=
720

1×6×8
=

720
48

= 15

For the Enigma’s plugboard, with n = 6 holes and m = 2 cables, this formula gives:

6!
(6−4)!2!22 = 45

indicating that there are 45 distinct ways to connect 2 cables in 6 plug holes.

15.6 The Enigma Machine and its Plugboard Feature 269

Figure 15.10: 15 Enigma Variations of 3 cables and 6 holes.

These combinations result from the code3 snippet below drawing Bezier curves between pairs
of points that symbolize the plugboard holes that are connected by cables in the Enigma machine.

for i, pair in enumerate(combo):
x1, y1 = positions[pair[0]]
x2, y2 = positions[pair[1]]
Calculate control point for Bezier curve
ctrl_x = (x1 + x2) / 2
ctrl_y = max(y1, y2) + 0.5 # 0.5 offset to give it a nice curve

This loop navigates through each pair of plugboard holes in the given combination (‘combo‘). The
‘enumerate‘ function provides an index ‘i‘ for each pair, which is used later to select a color for the
curve. The positions of the two plugboard holes in the current pair are extracted and their positions
are stored as (x, y) coordinates. For the Bezier curve, a control point is calculated. This control
point influences the curve’s shape. The x-coordinate of the control point is the midpoint between
‘x1‘ and ‘x2‘. The y-coordinate is slightly above the highest of ‘y1‘ and ‘y2‘, ensured by the added
offset of ‘0.5‘. The final line in the loop establishes the Bezier curve,

path = Path([(x1, y1), (ctrl_x, ctrl_y), (x2, y2)],
[Path.MOVETO, Path.CURVE3, Path.CURVE3])
patch = patches.PathPatch(path, facecolor=’none’, lw=2, edgecolor=colors[i])
ax.add_patch(patch)

in which a path is defined with a starting point, control point, and ending point. ‘Path.MOVETO‘
indicates the start, while ‘Path.CURVE3‘ denotes the use of a quadratic Bezier curve. A patch is
then created from this path and added to the plotting area (‘ax‘).

3enigmaPlugboard.ipynb.

https://colab.research.google.com/drive/15HG_EbdPSEKH3HDErey-E8KBjBv20Dzs?usp=sharing

270 Chapter 15. Combinatorics

Figure 15.11: 45 Enigma Variations of 2 cables and 6 holes.

15.7 Number of Triangles on an n×n Grid 271

15.7 Number of Triangles on an n×n Grid

The interplay between Combinatorics and geometry has long been a focal point of mathematical
research, often producing insights that are both profound and elegant in their implications. A classic
instance of this interplay is in the study of triangles formed on an n×n grid of dots, a problem not
far removed from the more practical concerns of World War II cryptanalysis.

Imagine now our Enigma plugboard as an n×n grid. We adapt the problem of fitting cables to
one of forming triangles on this grid, where each vertex of the triangle corresponds to a plug hole.
The question becomes: In how many ways can we draw non-collinear triangles on this grid if two
cables can attach to a common plug?

Each such triangle formed can be categorised its geometric properties, specifically its area
and perimeter. We distinguish between two types of areas: the Geometric Area, which uses the
classical formula for the area of a triangle, and the Pick’s Theorem Area, which is a fascinating
result that relates the area of a simple lattice polygon to the number of lattice points on its boundary
and interior. Ultimately, our aim is to verify Pick’s theorem for both right and scalene triangles.
Validating this theorem for our grid-based triangles can lead us closer to a general formula, T (n),
which dictates the number of available triangles for a given n×n set of dots.

Purpose of the Code

The PickTriangleCombos.ipynb code visually investigate our problem. For a user-specified n, it:
• Calculates all possible non-collinear triangles on the grid.
• Computes the Geometric and Pick’s Theorem areas for each triangle.
• Determines the perimeter for each triangle.
• Presents a visual representation of each triangle, annotated with its key properties.
This detailed combinatorial and geometric analysis will propel us towards understanding and,

hopefully, proving our general formula T (n).
In an n×n grid, there are n2 points. Any 3 distinct points on this grid can either form a triangle

or be colinear. A co-linear line is formed by three points in a straight line. On the other hand, a
triangle is formed by any three non-colinear points.

Triangles Formed by Choosing Any 3 Points

• Each point on the grid can act as a vertex of a triangle.
• There are n2 points on an n×n grid.
• The number of triangles you can form by choosing any 3 out of the n2 points is found by the

following considerations.
Given the n2 total points:

1. First Point: n2 choices.
2. Second Point: n2 −1 choices.
3. Third Point: n2 −2 choices.

The total ways to select these 3 points in sequence is:

n2 × (n2 −1)× (n2 −2).

However, the order of selection does not matter, so we divide by 3! (since there are 3! ways to
arrange 3 items):(

n2

3

)
=

n2 × (n2 −1)× (n2 −2)
3!

https://colab.research.google.com/drive/1cHYOllYkTCnGgLrFuowh8X7UN6XAmZgT?usp=sharing

272 Chapter 15. Combinatorics

Figure 15.12: Some of the 76 distinct ways to draw triangles on 3x3 grid of dots.

15.7 Number of Triangles on an n×n Grid 273

Number of non Triangles Combinations for n×n Grid

• For random joined lines many of these combinations will not form triangles. Some will be
three points lying on a straight line (col-linear points).

• For each row in the grid, the number of combinations of 3 col-linear points is
(n

3

)
. Since

there are n rows, the total from all rows is n×
(n

3

)
.

• Similarly, for each column, the number of combinations of 3 col-linear points is
(n

3

)
. So the

total from all columns is also n×
(n

3

)
.

Let’s denote:

T (n) = Number of triangles for n×n grid,

C(n) = Number of co-linear lines for n×n grid

The formula to calculate the number of co-linear lines is:

C(n) =
(

n2

3

)
− n2(n2 −1)(n2 −2)

6
.

The code, loopingPickTriangleCombosHistogram.ipynb delivers stacked dot plots that collate
similar and indeed congruent triangles according to their Perimeter to Area ratios.

Figure 15.13: Dot plots of the 76 and 6768 ways of drawing triangles on 3x3 and 6x6 dotted grids.

Given our data for n and number of triangles, we can confirm our relationship:

n Number of Co-linear lines,C(n) Number of Triangles, C(n)

3 32(32−1)(32−2)
3! −76 = 8 76

4 42(42−1)(42−2)
3! −516 = 44 516

5 52(52−1)(52−2)
3! −2148 = 152 2148

6 62(62−1)(62−2)
3! −6768 = 372 6768

7 72(72−1)(72−2)
3! −17600 = 824 17600

8 82(82−1)(82−2)
3! −40120 = 1544 40120

9 92(92−1)(92−2)
3! −82608 = 2712 82608

10 102(102−1)(102−2)
3! −157252 = 4448 157252

Table 15.3: Summary Table for n and Number of Co-linear Lines

https://colab.research.google.com/drive/1JdHSRTxOf7uGj1usJYUSaFesVEq3kb2i?usp=sharing

274 Chapter 15. Combinatorics

15.7.1 Perimeter to Area ratio Weighted-least squares

The code stackbubbleRegressionPickTriangle.ipynb delivers a bubble chart

Figure 15.14: Bubble chart of the 40120 ways of drawing triangles on an 8x8 dotted grid.

as well as a weighted least regression chart

Figure 15.15: Dot plot with P/A weighted regression line of best fit.

15.7.2 log-plot of frequency of triangle types up to n

The code metaLoopedCumulativeDotPlotloopingPickTriangleCombos.ipynb delivers the following
two plots

https://colab.research.google.com/drive/1_TzytIEG2vCMt9oHi6J9ZYnUqUq4lWux?usp=sharing
https://colab.research.google.com/drive/1nFEzukrPa6AuCWaGaaybVhXQ0wjOtzdc?usp=sharing

15.7 Number of Triangles on an n×n Grid 275

Figure 15.16: Stacked Dot plot of Cumulative frequency of triangle types as delineated by their
P/A ratio.

Figure 15.17: Stacked Dot plot of Cumulative Log-frequency of triangles types by their P/A ratio.

276 Chapter 15. Combinatorics

15.7.3 Factor Divisor Combinatorics
To determine the number of distinct combinations we might use the number of distinct combinations
as given by the binomial coefficient for k items being chosen from n distinct items,(

n
k

)
=

n!
k!(n− k)!

Consider the set of numbers {a,b,c,d} for which a ̸= b ̸= c ̸= d. Our task is to determine the
number of distinct combinations from either multiplying triplets with a singlet {(a · b · c)},{d}
or two pairs with two pairs {(a · b)},{(c · d)} in which within () we have commutation so that
(a ·b) = (b ·a). For the triplet-singlet case, we have four distinct combinations {a ·b · c} and {d},
{a ·b ·d} and {c}, {a ·d · c} and {b}, {d ·b · c} and {a}:

(a ·b · c) ·d
(a ·b ·d) · c
(a · c ·d) ·b
(b · c ·d) ·a

For the pair-pair case, we have the three distinct combinations {a ·b} and {c ·d}, {a ·c} and {b ·d},
{a ·d} and {c ·b}:

(a ·b) · (c ·d)
(a · c) · (b ·d)
(a ·d) · (c ·b)

Now, let’s consider the "degenerate" case in which not all elements are distinct, such as
{a,b,b,d} 4 so that we will have to consider different sub-cases based on the multiplicity of
elements. Let’s denote the repeated elements as b1 and b2: For the triplet-singlet case we have:

(a ·b1 ·b2) ·d
(a ·b1 ·d) ·b2

(a ·b2 ·d) ·b1

(b1 ·b2 ·d) ·a

only three of which are distinct for b1 = b2:

(a ·b1 ·b2) ·d
(a ·b1 ·d) ·b2 ≡ (a ·b2 ·d) ·b1

(b1 ·b2 ·d) ·a

For the pair-pair case we have only two distinct cases:

(a ·b1) · (b2 ·d)≡ (a ·b2) · (b1 ·d)
(a ·d) · (b2 ·b1)

That is, for the non-distinct case {a,b,b,d}, we have a total of
(3

2

)
+
(2

1

)
= 3+2 = 5 distinct

combinations for binomial coefficient
(n

k

)
.

4For the specific triplet-singlet case {2,3,3,5} we have the equivalences: (2 ·3 ·3) ·5 = (3 ·2 ·3) ·5 = (3 ·3 ·2) ·5 =
5 ·(2 ·3 ·3) = 5 ·(3 ·2 ·3) = 5 ·(3 ·3 ·2), and for the pair-pair case we have the equivalences:(2 ·3) ·(3 ·5) = (3 ·2) ·(3 ·5) =
(2 ·3) · (5 ·3) = (3 ·2) · (5 ·3)

15.7 Number of Triangles on an n×n Grid 277

Consider the set of numbers {a,b,c,d,e}. Our task is to determine the number of distinct
combinations of either multiplying quad-singles {(a ·b · c ·d)(e)} or triplet-pairs {(a ·b · c)(d · e)}
in which within () we have commutation so that a ·b = b ·a. For the quad-singles case, there are 24
distinct combinations and for the triplet-pairs case, there are also 24 distinct combinations so in
total number of distinct combinations is 24+24 = 48:

(a ·b · c ·d) · e (a ·b ·d · c) · e (a · c ·b ·d) · e

(a · c ·d ·b) · e (a ·d ·b · c) · e (a ·d · c ·b) · e

(b ·a · c ·d) · e (b ·a ·d · c) · e (b · c ·a ·d) · e

(b ·d ·a · c) · e (b ·d · c ·a) · e (c ·a ·b ·d) · e

(c ·b ·d ·a) · e (c ·d ·a ·b) · e (c ·d ·b ·a) · e

(d ·a ·b · c) · e (d · c ·b ·a) · e (d ·b · c ·a) · e

(a ·b · c) · (d · e) (a · c ·b) · (d · e) (a ·d ·b) · (c · e)

(a ·b ·d) · (c · e) (a · c ·d) · (b · e) (a ·d · c) · (b · e)

(b ·a · c) · (d · e) (b · c ·a) · (d · e) (b ·d ·a) · (c · e)

(b ·a ·d) · (c · e) (b · c ·d) · (a · e) (b ·d · c) · (a · e)

(c ·a ·b) · (d · e) (c ·b ·a) · (d · e) (c ·d ·a) · (b · e)

(c ·a ·d) · (b · e) (c ·b ·d) · (a · e) (c ·d ·b) · (a · e)

(d ·a ·b) · (c · e) (d · c ·a) · (b · e) (d ·b · c) · (a · e)

(d ·a · c) · (b · e) (d · c ·b) · (a · e) (d ·b ·a) · (c · e)
For the degenerate case {a,a,c,c,e}, we have the 15 distinct combinations:

(a ·a · c · c) · e (a · c ·a · c) · e (a · c · c ·a) · e

(c ·a ·a · c) · e (c ·a · c ·a) · e (c · c ·a ·a) · e

(a ·a · c) · (c · e) (a · c ·a) · (c · e) (c ·a ·a) · (c · e)

(a ·a · c) · (e · c) (a · c ·a) · (e · c) (c ·a ·a) · (e · c)

(a · c · c) · (a · e) (c ·a · c) · (a · e) (c · c ·a) · (a · e)

Stirling Numbers
Stirling numbers are combinatorial numbers that arise in various counting problems. They are
categorized into two kinds:

1. Stirling Numbers of the First Kind S(n,k): Counts the number of permutations of n
elements with exactly k permutation cycles.

2. Stirling Numbers of the Second Kind
{n

k

}
: Counts the number of ways to partition a set of

n elements into k non-empty subsets.

Connection to Composite Numbers and Their Divisors
If we are considering the number of distinct rectangles that can be formed using the divisors of a
composite number (including the number itself), the relevant concept is partitions of a set. This
is because, given a set of divisors, we are essentially partitioning them into subsets representing
different rectangles.

Thus, for this problem, the Stirling Numbers of the Second Kind are applicable, as they deal
with partitioning sets into non-empty subsets.

For example, given a composite number with n divisors (including the number itself), the total
number of ways to form distinct rectangles by partitioning these divisors is represented by the sum:

n

∑
k=1

{n
k

}
where the summation runs through all possible partitions (or rectangle configurations) using

the divisors.

278 Chapter 15. Combinatorics

When forming rectangles from divisors of numbers with squared primes, neither Stirling num-
bers of the second kind nor partition numbers directly address the issue due to divisor redundancies.
A customized approach considering prime multiplicities is essential.

15.8 Linear Algebra and Dimensional Analysis

Dimensional Analysis of Fundamental Constants
Our micro and macro universe is governed by four fundamental constants:

• c (speed of light) has units [L/T]
• G (gravitational constant) has units [L3/M/T 2]
• H (Hubble constant) has units [1/T]
• h (Planck constant) has units [M×L2/T]

We are interested in forming combinations of these constants to construct unit-full measures of
mass [M], length [L], and time [T]. Our approach is to use dimensional analysis to express the mass
scale m as:

m ∼ cαhβ HγGδ

In order to determine the exponents α,β ,γ, and δ by equating the units on both sides for each
of the fundamental quantities [M], [L], and [T]. This results in a system of equations that can be
solved for the unknowns in terms of one of them, say α . Solving for these exponents, allows us
to understand the relations and combinations of these constants to produce different mass scales.
This is of particular interest in cosmology and high-energy physics, where the interplay between
the scales determined by these constants provides insights into the structure and evolution of the
universe.

15.8.1 Mass of Universe
By first assuming that β = 0 (so that we have a well determined system of three unknowns in three
equations) we rewrite our constants in terms of their units to an unknown power:

cα = LαT−α

Hγ = T−γ

Gδ = M−δ L3δ T−2δ

The dimensions of a product of the quantities raised to powers is the product of the dimensions
raised to the same powers. So, the system of equations for the dimensions is:

For [M]:

0×α −0+0−δ = 0 =⇒ −δ = 0 (15.1)

For [L]:

1×α −0+0+3δ = 0 =⇒ α +3δ = 0 (15.2)

For [T]:

−1×α − γ −2δ = 0 =⇒ −α − γ −2δ = 0 (15.3)

From these equations, you can extract the coefficients to form the matrix and proceed to solve for
the values of α , γ , and δ using Gaussian elimination:

A

α

β

δ

=

1

0

0

 (15.4)

15.8 Linear Algebra and Dimensional Analysis 279

in which A, the coefficient matrix is given by:

A =

0 0 −1

1 0 3

−1 −1 −2,

 (15.5)

and find the solution when A is non-singular, by determining the inverse of A:
α

β

δ

= A−1

1

0

0

 (15.6)

A’s determinant determines the nature of the solutions of our system:
• If det(A) = 0, the matrix A is singular, implying our system of equations either has no solution

or an infinite number of solutions.
• If det(A) ̸= 0, the matrix A is non-singular and there is a unique solution to the system which

can be found using linear algebra methods.
We use python to construct our system of three equations in three unknowns as a matrix equation, :

import numpy as np
A = np.array([

[0, 0, -1], # coefficients from equation for [M]
[1, 0, 3], # coefficients from equation for [L]
[-1, -1, -2] # coefficients from equation for [T]

])
B = np.array([1, 0, 0]) # right-hand sides
Solve using Gaussian elimination
alpha, gamma, delta = np.linalg.solve(A, B)

and we use the Fractionmodule to write our powers as fractional indices:

from fractions import Fraction
alpha_frac = Fraction(alpha).limit_denominator()
gamma_frac = Fraction(gamma).limit_denominator()
delta_frac = Fraction(delta).limit_denominator()

The output is

m ∼ c3H−1G−1 =
c3

HG
≡ m1

By implementing a symbolic computation tool, we can efficiently determine the exponents for
various combinations, aiding in our understanding of the universe’s fundamental scales. This is a
whole lot simpler than developing a whole Gaussian elimination routine yourself as per python

def Gaussian_elimination_with_pivoting(A, b):
n = len(b)
Forward elimination with pivoting
for k in range(n):

Pivot for largest value in column

https://colab.research.google.com/drive/118N-OEPlKnkxtVGsG3e01VqnKvX_veUV?usp=sharing
https://colab.research.google.com/drive/1wz05oqDu0djF9I2sWPmc_89l8N36IkPU?usp=sharing

280 Chapter 15. Combinatorics

max_row = max(range(k, n), key=lambda i: abs(A[i,k]))
A[[k, max_row]] = A[[max_row, k]]
b[k], b[max_row] = b[max_row], b[k]
Check for zero pivot
if np.abs(A[k,k]) < 1.0e-12:

return None # Matrix is singular, no unique solution

for i in range(k+1, n):
factor = A[i,k] / A[k,k]
for j in range(k, n):

A[i,j] -= factor * A[k,j]
b[i] -= factor * b[k]

Back substitution
x = np.zeros(n)
x[n-1] = b[n-1] / A[n-1, n-1]
for i in range(n-2, -1, -1):

sum_ = b[i]
for j in range(i+1, n):

sum_ -= A[i,j] * x[j]
x[i] = sum_ / A[i,i]

return x

15.8.2 Planck Mass
We can insist insist that a priori γ = 0, so that our coefficient matrix, A is given by:

A =

0 1 −1

1 2 3

−1 −1 −2

 (15.7)

We have our code calculate the determinant then check for singularities:

det_A = np.linalg.det(A)
if det_A == 0:

print("\nMatrix A is singular and our system of equations either has no solutions or an infinite number of solutions.")
else:

print("\nMatrix A is non-singular so can proceed to solve the system of equations.")
print("\nDeterminant of A:", det_A)
Step 4: Solve if non-singular
if det_A != 0:

solution = np.linalg.solve(A, B)
alpha, beta, delta = solution

The output is

m4 = c1/2h1/2G−1/2 =

(
hc
G

)1/2

≡ mP

The mass, m4 is referred to as the Planck mass, m4 ≡ mP while m1 is the amount of Baryonic
matter in a Hubble sphere universe (mass of the universe mU = 1.5×1053 kg.) and m2 by virtue of

https://colab.research.google.com/drive/1-luVbAWXWWioOnoGOJelyrxu9W0GT1UJ?usp=sharing

15.8 Linear Algebra and Dimensional Analysis 281

m2c2 = hH is the self-gravitational potential mass-energy or the graviton mass. These masses span
121 orders of magnitude (comparable to the discrepancy between QFT’s estimation of the vacuum
zero point energy and the observed dark energy density value). Such coincidences are likely to
abound - as we will shortly see - there are many more masses from where these came from if we
entertain forming their geometric means m12..n = n

√
m1 ×m2 × ...×mn.

Undetermined Systems
To illustrate the under-determined system, let’s first determine the equations for the units:

• c (speed of light) has units [L/T], which leads to the equation:

α − γ = 0 (15.8)

• G (gravitational constant) has units [L3/M/T 2], which leads to:

α +3δ −β −2γ = 0 (15.9)

• H (Hubble constant) has units [1/T], which results in:

−γ = 0 (15.10)

• h (Planck constant) has units [M×L2/T], which leads to:

2α +β − γ = 0 (15.11)

For the sake of demonstration, we’ll pick only three of the equations (to match the number of
fundamental units: [M], [L], [T]). We’ll form a 3×4 matrix and solve it, expecting to get a free
variable.

the code
Let’s find the values of α that satisfy the given expressions for the masses m1, m2, m3, and m4

using the equations we derived earlier.
Given the general relations from our dimensional analysis:

1. β −δ = 1 (from [M] units)
2. α +2β +3δ = 0 (from [L] units)
3. −α −β − γ −2δ = 0 (from [T] units)
We find the general solutions:

β =
3
5
− α

5

δ =−α

5
− 2

5

γ =
1
5
− 2α

5

Four combinations of each of three fundamental units [M][L][T] out of four unknowns indices,
α,β ,γ,δ are:

m1 =
c3

GH
∼ 1.8×1053 kg

m2 =
hH
c2 ∼ 1.6×10−68 kg

https://colab.research.google.com/drive/1tTSHj8UsL_4UolFANiR0JgfF0IJzcYCY?usp=sharing

282 Chapter 15. Combinatorics

m3 =

(
h3H
G2

)1/5

∼ 4.3×10−20 kg

m4 =

(
hc
G

)1/2

∼ 5.456×10−8 kg

To derive the values of α that generate these masses, we equate the powers of c,h,H, and G in
each mass expression to α,β ,γ, and δ respectively.

By substituting the known values of α into our derived expressions, we can confirm the
consistency of our equations and validate the given mass scales.

For the given masses, the values of α and corresponding β ,γ,δ are:

α = 3 β = 0 γ =−1 δ =−1

α =−2 β = 1 γ = 1 δ = 0

α = 0 β =
3
5

γ =
1
5

δ =−2
5

α = 1 β =
2
5

γ =−1
5

δ =−3
5

There are
(4

3

)
= 4 masses that can be simply formed as combinations of three of the four

fundamental constants of nature, c,G,H,h determined by a dimensional analysis of the system of
three linear equations, m ∼ cαhβ HγGδ .

There are 4
2C = 6 ways to form the geometric mean of the first four masses, m1,m2,m3,m4

comprising 3 of the four fundamental constants (m12 =
√

m1 ×m2) etc:

m12 = m4 =

(
hc
G

)1/2

≡ mP

m13 =

(
c15h3

G7H4

)1/10

∼ 8.9×1016 kg

m14 =

(
c7h

G3H2

)1/4

∼ 1×1023 kg

m23 =

(
H6h8

G2c10

)1/10

∼ 2.6×10−44 kg

m24 =

(
H2h3

Gc3

)1/4

∼ 3×10−38 kg

m34 =

(
H2h11c5

G9

)1/20

∼ 4.83×10−14 kg

15.8 Linear Algebra and Dimensional Analysis 283

For m12: α = 3
2 ,β = 1

2 ,γ = 0,δ = −3
2

For m13: α = 9
5 ,β = 3

10 ,γ = −2
5 ,δ = −13

10
For m14: α = 7

4 ,β = 1
4 ,γ = −1

2 ,δ =−1
For m23: α = 3

10 ,β = 4
5 ,γ = 3

5 ,δ = −9
5

For m24: α = 1
4 ,β = 3

4 ,γ = 1
2 ,δ = −3

2
For m34: α = 11

20 ,β = 11
20 ,γ = 1

10 ,δ = −13
10

The Planck mass, mP is the geometric mean of graviton, m2 and baryonic universe mass, m1.
Given its relative simplicity one might entertain m24 = mν with the maximum possible mass of
the lightest neutrino at 0.086eV, which is equivalent to 1.5×10−37 kg. There are a further 4

3C = 4
ways to form the geometric mean as combinations of three from m1,m2,m3,m4:

m123 =

(
Hh8c5

G7

)1/15

∼ 5.03×10−12 kg

m134 =

(
h11c35

G19H8

)1/30

∼ 7.5×108 kg

m234 =

(
h21H12

c15G9

)1/30

∼ 3.4×10−32 kg

m124 =

(
hc
G

)1/2

≡ m4

We see that m4 circuitously is just the geometric mean of the three masses m1,m2,m4 while
m234 is of the order of the electron mass, me = 9.11×10−31 kg. All the other means involve all
four constants but are a little contrived in structure.

15.8.3 Weinberg’s Mass
Additionally, the literature often quotes a fifth fundamental mass as espoused by Weinberg, of the
order of a meson mass π0 = 2.4×10−28 kg, K0 = 8.9×10−28 kg, η = 9.8×10−28 kg or a muon
mµ = 106MeV/c2 = 1.9×10−28 kg) comprised more simply of all four constants (the 2/3 refers
to a choice of α explained below):

m2/3
5 ≡ mW =

(
h2H
Gc

)1/3
∼ 3.6×10−28 kg.

Weinberg is solving an undetermined system of three linear equations in the three units of
[M][L][T] for the four unknowns of m ∼ hαHβ Gγcδ . As such, there are manifold solutions defined
by the constraint α = β+1

2 = 3−δ

5 = γ + 1 for α ̸= 0,β ̸= 0,γ ̸= 0,δ ̸= 0. Weinberg’s appealing
choice is to take α = 2

3 ,β = 1
3 ,γ = −1

3 ,δ = −1
3 . Choosing rather the solution plane defined by

α = 3
4 , we have then β = 1

2 ,γ =−1
4 ,δ =−3

4 , according to the second line in the table captured
below:

So giving something more of the order 10−38 of a neutrino mass,

m3/4
5 ≡ m24 =

(
h3H2

Gc3

)1/4
∼ 3×10−38 kg.

As you can see, you just need to choose your rational exponent α for h to conjure an interesting
mass value. That is, if you attribute some geometry to justify using a nice-looking rational. If we
vary the exponent α (A in the graph below), we can see that α = 2

3 delivers near the muon value:

284 Chapter 15. Combinatorics

m135 =

(
c40h19

G26H7

)1/45

∼ 142kg

m145 =

(
c19h7

G11H4

)1/18

∼ 1.54×106 kg

m235 =

(
H23h34

G11c35

)1/45

∼ 6.3×10−39 kg

m245 =

(
H8h13

c11G5

)1/18

∼ 6.8×10−35 kg

m125 =

(
Hh5c2

G4

)1/9

∼ 1.03×10−14 kg

m345 =

(
H16h53c5

G37

)1/90

∼ 9.5×10−19 kg

An unseemly bunch. There is one combination that is the geometric mean of m1,m2,m3,m4:

m1234 =

(
H2h21c15

G19

)1/40

∼ 5.13×10−11 kg

There are 5
4C = 5 ways to form the geometric mean as combinations of four from m1,m2,m3,m4,m5,

so there are a further four masses:

m1345 =

(
h53c95

G67H14

)1/120

∼ 0.629kg

m1235 =

(
H8h34c10

G26

)1/60

∼ 4.64×10−16 kg

m2345 =

(
H46h83

c55G37

)1/120

∼ 3.4×10−31 kg

m1245 =

(
H2h13c7

G11

)1/24

∼ 4.93×10−13 kg

There is one combination that is the geometric mean of m1,m2,m3,m4,m5:

m12345 =

(
H16h83c35

G67

)1/150

∼ 1.91×10−14 kg

15.8 Linear Algebra and Dimensional Analysis 285

Introduction to the Hat Check Problem

The Hat check problem is a classic problem in combinatorial probability theory:
Problem Statement: n people attend a party and check their hats. Due to a gust of wind, the

hats are blown away and then randomly redistributed. What is the probability that no one receives
their own hat back?

One way to solve the problem is by considering the concept of "derangements".

Definition 25 Derangement is a permutation of a set where no element appears in its original
position. It’s essentially a complete reshuffling of the elements. Also known as "complete
permutations"

The probability that no one receives their own hat back can be expressed in terms of derange-
ments as follows. We count the number of permutations where no element is in its original position,
then divide it by the total number of permutations. Denoting the number of derangements of n hats
by !n, or Dn for large values of n, this looks like:

lim
n→∞

Dn

n!
=

1
e

This implies that as n becomes large, the number of derangements Dn approaches n!
e . Now, let’s

relate this to the probability Pn that no one gets their own hat back when there are n people. The
probability Pn can be expressed as the ratio of the number of derangements to the total number of
permutations, Pn =

Dn
n! . Substituting the approximate expression for Dn, we get that as the number

of hats, (n approaches infinity, the probability that no one gets their own hat back is:

Pn ≈
n!
e

n!
=

1
e

hatCheckProbelm-derangments.ipynb delivers this limiting result in the form of a scatterplot,

Figure 15.18: Hat check probabilities for n hatted people.

https://colab.research.google.com/drive/1ZD_X4doRXB5Cph-SpAuVmT63TYXQ8Sus?usp=sharing

286 Chapter 15. Combinatorics

15.8.4 Recursive formula
We will now derive a recursive formula for the probability Pn by first establishing some notation:

• Pn is the probability that no one gets their own hat back when there are n people.
• pn is the probability that the nth person does not get their own hat back for n people.

Given these definitions, p1 = 0 because if there is only one person, they are guaranteed to get
their own hat back, and p2 =

1
2 because when there are two people, there are only two possible

arrangements, one in which they both get their own hats back and one in which they don’t. Thus,
the probability is 1

2 in this case. Now, let’s consider Pn, the probability that no one gets their own
hat back when there are n people. We can express Pn in terms of pn as Pn = pn ·Pn−1.

Because for each valid permutation of n people where the nth person does not get their own hat
back, the remaining n−1 people must also not get their own hats back. Hence, the probability of n
people not getting their own hats back is the probability of the nth person not getting their hat back
multiplied by the probability that the first n−1 people do not get their own hats back. Now, we
need to find the recursive formula for pn.

Consider the nth person:
1. The probability that the nth person does not get their own hat back is the probability that they

get one of the other n−1 hats out of the total n hats. This probability is n−1
n .

2. Or, the nth person gets their own hat back, but in that case, the (n−1)th person must not get
their hat back. The probability of the (n−1)th person not getting their hat back is pn−1, and
the probability that the nth person gets their own hat back is 1

n .
Thus, the recursive formula for pn is:

pn =
n−1

n
· pn−1 +

1
n
·Pn−2

Combining the expressions for Pn and pn, we have:

Pn =
n−1

n
· pn−1 ·Pn−1 +

1
n
·Pn−2

Given the base cases p1 = 0 and p2 = 1
2 , we can use these recursive formulas to compute the

probability Pn for any n where recall that pn is the probability that the nth person does not get their
own hat back, and Pn is the overall probability that no one gets their own hat back when there are n
people. For large values of n, we can assume that pn−1 and Pn−1 are approximately equal to Pn−2,
as the probability does not change significantly from one step to the next due to the large number of
permutations. Therefore, we can simplify our recursive formula as:

Pn ≈
n−1

n
·Pn−2 +

1
n
·Pn−2 ≈

(
1− 1

n

)
·Pn−2

Now, let’s examine the behavior of Pn as n approaches infinity.

lim
n→∞

Pn ≈ lim
n→∞

(
1− 1

n

)n/2

·P0 ≈
(

lim
n→∞

(
1− 1

n

)n)1/2

·P0 ≈
(

1
e

)1/2

·P0 ≈
1√
e
,

as P0 = 1 (since there is only one possible permutation when there are no people). Hence, for a
large number of hats (n approaching infinity), the probability that no one gets their own hat back is
approximately 1√

e , which is approximately 1
e when squared. This result shows that as the number

of hats becomes large, the probability approaches 1
e .

15.8 Linear Algebra and Dimensional Analysis 287

15.8.5 interpolating approaches
To derive the formula for "complete permutations" w(n), which when divided by n! gives us the
probability Pn =

w(n)
n! , let’s relate it to derangements. Consider the set of all permutations of n

elements, denoted by n!. From this, we subtract the number of permutations with fixed points to
gives us the number of complete permutations:

w(n) = n!−!n

Now, dividing both sides by n!, we get the probability Pn that no one gets their own hat back:

Pn =
w(n)

n!
= 1− !n

n!

in which!n satisfies the recursive formula !n = (n−1)(!(n−1)+!(n−2)) so

Pn = 1− (n−1)(!(n−1)+!(n−2))
n!

Simplifying this expression gives us the desired recursive formula for Pn in terms of derangements.

def derangement(n):
if n == 0:

return 1
elif n == 1:

return 0
elif n == 2:

return 1
else:

return (n - 1) * (derangement(n - 1) + derangement(n - 2))

def probability_no_one_gets_own_hat_back(n):
total_permutations = math.factorial(n)
derangements = derangement(n)
probability = derangements / total_permutations
return probability

To calculate the number of derangements !n and the probability Pn that no one gets their own hat
back, we define two functions in Python.

Derangement Function: The function derangement(n) calculates the number of derange-
ments for n elements. A derangement is a permutation of a set where no element appears in its
original position. The function is defined as follows:

def derangement(n) :

1 if n = 0
0 if n = 1
1 if n = 2
(n−1)× (derangement(n−1)+derangement(n−2)) otherwise

Probability Function: The function probability_no_one_gets_own_hat_back(n) computes
the probability Pn that no one gets their own hat back among n people. It is defined as follows:

def probability_no_one_gets_own_hat_back(n) :

288 Chapter 15. Combinatorics

total_permutations = n! (total number of permutations)

derangements = derangement(n) (number of derangements)

probability =
derangements

total_permutations
(probability of no one getting their own hat back)

return probability

These functions provide a way to compute the probability of the hat check problem using
derangements, which is a fundamental concept in combinatorial mathematics.

16. Giving a Toss

16.1 Win Loss Frequency

Step 1: Define the Randomness
To begin, we need to precisely define what we mean by a "truly random" win-loss profile. In a

genuinely random scenario, the outcome of each game should be independent of previous outcomes.
This signifies that the result of one game should not influence the result of the next. In simpler
terms, a win or loss today should have no bearing on whether the team wins or loses tomorrow.

Step 2: Identify Winning Streaks
One approach to assess randomness is by considering winning streaks. If the win-loss profile is

genuinely random, we should anticipate encountering various lengths of winning streaks throughout
the season.

Imagine you’re flipping a fair coin. If it’s genuinely random, you’ll obtain a mixture of heads
and tails, and occasionally, you might experience a sequence of consecutive heads or tails. Similarly,
if the baseball team’s wins and losses are truly random, you’d anticipate observing short, medium,
and long winning streaks during the season.

Step 3: Compare to Dice Throwing
Now, let’s draw an analogy with throwing two dice. When you throw two dice, you have 36

possible outcomes (6 sides on the first die times 6 sides on the second die). Some outcomes are
more likely than others. For instance, there’s only one way to achieve a sum of 2 (both dice showing
1), but there are multiple ways to attain a sum of 7 (1+6, 2+5, 3+4, 4+3, 5+2, 6+1).

In the context of baseball, shorter winning streaks are more probable than longer ones. Just as
rolling a sum of 7 is more likely than rolling a sum of 2 with two dice. Longer winning streaks
resemble rarer occurrences like rolling a sum of 2. Thus, if the team experiences an unusually
extended winning streak, it might raise queries about the randomness of the outcomes.

Step 4: Analyze the Likelihood of Streaks
To ascertain the authenticity of the win-loss profile’s randomness, we can compute the likelihood

of observing specific streaks. This involves evaluating the probabilities of different lengths of
streaks occurring.

For instance, the probability of flipping heads three times in a row with a fair coin is (0.5)3 =

290 Chapter 16. Giving a Toss

0.125, which is 12.5%. Similarly, we can compute the likelihood of a baseball team having a
three-game winning streak, given the assumed win probability per game. If the actual streaks
correspond to these probabilities, it suggests randomness.

Step 5: Compare Observations

Lastly, compare the actual win-loss streaks of the LA Dodgers’ 1993 season with the calculated
probabilities. If you notice streaks that are substantially rarer than what random chance would
anticipate, it might imply that the outcomes are not genuinely random. Conversely, if the observed
streaks reasonably align with the anticipated probabilities, it supports the notion of randomness.

Remember, randomness doesn’t imply that every outcome is equally probable. In a random
sequence of coin flips, you might still encounter extended sequences of heads or tails sporadically.
Similarly, in baseball, a truly random sequence of wins and losses can still yield streaks of varying
lengths.

Keep in mind that assessing randomness is a statistical endeavor. To make a definitive determi-
nation about the LA Dodgers’ 1993 season, you’d need to conduct an in-depth statistical analysis,
including calculating probabilities and comparing them to the observed streaks.

16.2 Win-Loss distribution of Coin-Tossing

In a series of n coin tosses, we consider a win for Alice when the outcome is a head (denoted as
1) and a loss when the outcome is a tail (denoted as 0). Let Zn denote Alice’s fortune after n coin
tosses, defined as twice the number of heads (successes) minus the number of tosses:

Zn = 2Sn −n

where Sn is the number of successful coin tosses (heads).

The number of successful coin tosses, Sn, follows a binomial distribution B(n,h; 1
2) given by

the binomial coefficient:

B(n,h;
1
2
) =

(
n
h

)(
1
2

)h(
1− 1

2

)n−h

The variable X represents the number of times Alice is in the lead throughout the series of
tosses. To find the probability distribution of X , we follow [18] and generate all possible sequences
of heads and tails, keeping track of the number of times Alice is ahead in the sequence.

The Python code implementation generates all possible sequences of 0s (tails) and 1s (heads) for
a given length n using binary representation. For each sequence, it counts the number of times Alice
is in the lead (when the cumulative sum of heads exceeds the cumulative sum of tails). The function
‘calculateleadd istribution‘accumulates these counts, and ‘calculate f inal f ortune‘ computes Zn for
each sequence. Finally, ‘plotleadd istribution‘visualizesthedistributiono f X f orAlicebeingintheleadanevennumbero f times.

16.3 Sticking it to Pascal 291

Figure 16.1: Distribution for number times Alice leads Bob.

The function ‘generatetosssequences‘producesall possiblesequenceso f cointosseso f lengthn.Foreachsequence, the f unction‘calculateleadt imes‘countshowo f tenAliceisinthelead.T hesecountsareaccumulatedinadistributiondictionary,whichmapsthenumbero f leadtimestothenumbero f sequenceswiththatmanyleadtimes.
The function ‘calculate f inal f ortune‘takesasequenceo f cointossesandcalculatesAlice′s f inal f ortuneZn

by evaluating 2Sn−n, with Sn being the sum of 1s in the sequence. The function ‘plotleadd istribution‘usesmat plotlibtocreateabarchartrepresentingthe f requencyo f eachnumbero f leadtimes.

16.3 Sticking it to Pascal
In a series of coin tosses, each individual toss can be considered a Bernoulli trial, a random
experiment with exactly two possible outcomes: success (Head) or failure (Tail). If we denote a
Head by H and a Tail by T , and assume that the coin is fair, the probability of heads (success) is p
and the probability of tails (failure) is q = 1− p.

16.3.1 Bernoulli Trials and the Distribution of Runs of Heads
The probability mass function (pmf) of a Bernoulli distribution, where X is a random variable
representing the outcome of a single trial, is given by:

P(X = k) =

{
p if k = 1
1− p if k = 0

16.3.2 Augmented Pascal triangle
When considering a run of Heads, we are interested in the number of consecutive successes in a
sequence of Bernoulli trials.

The distribution of the length of the longest run of Heads in a sequence of n coin tosses can be
described using an augmented version of Pascal’s triangle, [22].

We define the cumulative distribution function Fn(x) for a sequence of n coin tosses as the
probability that the longest run of consecutive heads is at most x. It is given by the formula:

Fn(x) =
n

∑
h=0

Ch
n(x)phqn−h

292 Chapter 16. Giving a Toss

where:
• Ch

n(x) is the number of sequences of length n with exactly h heads and no more than x
consecutive heads.

• p is the probability of getting heads on a single coin toss.
• q = 1− p is the probability of getting tails on a single coin toss.
The recursive formula for Ch

n(x), which augments Pascal’s triangle, is defined as:

Ch
n(x) =

x

∑
j=0

Ch− j
n−1− j(x)

with the initial conditions:

Ch
n(3) =

{
0 for 3 < h < n(n

h

)
for h ≤ 3

pandaX=3HT.ipynb achieves this

Figure 16.2: Hockey stick adapted Pascal for X=2 and X=3 cases of consecutive Heads

We can construct the frequency distribution for the longest run Ln by calculating the differences
in consecutive values of the cumulative distribution, i.e., Rn(x) = Fn(x)−Fn(x−1).

flexibleFixedRunOfXFrequencyDistribution.ipynb achieves this

Figure 16.3: Cumulative Frequency Distribution for X=3.

https://colab.research.google.com/drive/1l5hP-YScZbPOUWzvUcNhxnzwUmz_44Ei?usp=sharing
https://colab.research.google.com/drive/1tFdqTTUeHsZa-UZGP2eV3vWwNL_7N5Oq?usp=sharing

16.4 Coin Toss clustering on a table 293

16.4 Coin Toss clustering on a table
When considering a cluster of circles, such as coins on a plane, an exact calculation of the
overlapping area can be complex due to the potential for intricate interlacing boundaries. To
approximate the total area covered by these circles, we can employ the concept of a convex hull. A
convex hull is the smallest convex shape that completely encloses a set of points. In two dimensions,
it can be visualized as the shape formed by a rubber band stretched around the exterior points.

Figure 16.4: Coins Random Tossed on a Table.

For a set of points that represent the centers of the circles, the convex hull does not correspond
to the exact area because it does not account for the curvatures of the circles. However, it provides
a useful approximation in the following way:

1. If the number of circles is less than three, they cannot form a polygon, and thus the area is
considered to be zero since there is no enclosed space by lines.

2. For three or more circles, the convex hull can be computed. The vertices of the convex hull
polygon are a subset of the circle centers. This polygon does not include the actual area of
the circles themselves, but rather the area of the space between the centers of the outermost
circles.

294 Chapter 16. Giving a Toss

3. The area of the convex hull polygon is considered to be an approximation of the total area
covered by the circles. This approximation is more accurate when the circles are closely
packed, as the convex hull then tends to align closely with the perimeter of the interlaced
area.

Figure 16.5: 1500, 2000, 4000 and 5000 tosses

Thus, the ConvexHull object provides an estimated area (referred to as volume in 2D) which
we use as an approximation for the complex shape formed by overlapping circles.

Aapprox = ConvexHull(coins).volume (16.1)

Where Aapprox is the approximate area of the interlaced circles, and coins is the set of points
representing the centers of the circles.

The Python code presented is part of an algorithm used to identify and analyze clusters of
points, which in this context represent the centers of coins on a plane. The purpose of this algorithm
is to group coins that form connected ’islands’ and then calculate certain properties of these islands,
such as their area and the maximum distance between any two coins within an island.

The main functions involved are:
• find: Implements the path compression technique, which is part of the Union-Find algorithm

used to efficiently find the representative of an element’s set.

16.4 Coin Toss clustering on a table 295

Figure 16.6: By Number Size Coin Island Distributions

• union: Joins two sets if they are not already joined, by linking one representative to another.
It uses union by rank to keep the tree shallow.

• get_island_info: Analyzes all pairs of coins and uses the Union-Find algorithm to group
overlapping coins into islands. It also calculates the ’center of mass’, maximum length, and
approximate area for each island.

The Python packages used in this algorithm include:
• NumPy: A fundamental package for scientific computing with Python providing a high-

performance multidimensional array object and tools for working with these arrays. It is
used here to calculate the mean position of coins in an island (center of mass) and to handle
array operations efficiently.

• SciPy: This library is used for scientific and technical computing. The function cdist from
the scipy.spatial.distance module calculates the distance between each pair of the two
collections of inputs (coin centers in this case). It is crucial for determining whether two
coins overlap and hence belong to the same island.

FixedCoinTosser.ipynb

Comparison of Functionality Changes and Improvements
Improvement in Island Detection

• Old Code: Overlapping coins are checked using a nested loop with pairwise distance checks.
• New Code: Implements Union-Find algorithm for more efficient island detection.

Plot Range Extension
• Old Code: plt.xlim(0, 50*d) and plt.ylim(0, 50*d)

• New Code: plt.xlim(0, 100*d) and plt.ylim(0, 100*d)

https://colab.research.google.com/drive/1NWNA2rNe3rOCdAAINxWx-37pgAyAMZUT?usp=sharing

296 Chapter 16. Giving a Toss

Figure 16.7: By Length Size Coin Island Distributions

Area Calculation
• Old Code: Does not calculate area.
• New Code: Calculates the area of islands using the Convex Hull method.

Histogram Presentation Enhancements
• Old Code: Basic histogram with default scaling.
• New Code: Histograms with log scaling, improved binning, and fitted lines for better data

interpretation.

Scalability Improvement
• Old Code: Single simulation with user input for the number of tosses.
• New Code: Allows running multiple simulations over a range of tosses with a function

run_simulations(LT, UT, steps).
logLoopedCoinTosserArea.pynb

https://colab.research.google.com/drive/15aEn5E03CjvE9xZnuRjc44FB7Ae7SRAM?usp=sharing

16.4 Coin Toss clustering on a table 297

Rolling Stacked Charts
We have this code MetalogLoopedCoinTosserNumber.pynb delivers the following stacked chart

Figure 16.8: Coin Toss Island Number frequency by Number of tossed coins.

whereas this PercentWeightedMetaLoopedCoinTosserNumber.pynb delivers the following
normalized bin weighted stacked chart

Figure 16.9: Coin Toss Island Number as (bin size weighted) % of Number of tossed coins.

\Function{RunSimulationsAndCollectData}{LT, UT, $stepSize$}
\State $frequencyData \gets \{i: [] \text{ for } i \text{ in range}(1, 10)\}$
\State $frequencyData[">9"] \gets []$

https://colab.research.google.com/drive/1O-Dpwtc1ktiYDHR0zPQezFOCbH8PErki?usp=sharing
https://colab.research.google.com/drive/1Z1Zwyip70IVUNaC50qhq96Ztj0mLMaAX?usp=sharing

298 Chapter 16. Giving a Toss

\State $totalCoinsData \gets []$
\State $simulationSteps \gets \text{arange}(LT, UT + stepSize, stepSize)$

\ForAll{T in $simulationSteps$}
\State $nSizes \gets \text{simulateCoinToss}(T)$
\State $totalCoins \gets \text{sum}(nSizes)$
\State $totalCoinsData \text{ append } totalCoins$

\State $sizeCounts \gets \{size: nSizes.count(size) \text{ for } size \text{ in range}(1, 11)\}$
\State $weightedCount \gets \text{sum}(count \times size \text{ for } size, count \text{ in } sizeCounts \text{ if } size > 9)$

\For{$size$ in range(1, 10)}
\State $frequencyData[size] \text{ append } ((sizeCounts[size] \times size) / totalCoins) \times 100$

\EndFor
\State $frequencyData[">9"] \text{ append } (weightedCount / totalCoins) \times 100$

\EndFor

\State \Return $frequencyData$, $totalCoinsData$, $simulationSteps$
\EndFunction

17. Integer Lattice problems

17.1 Surd diagonals drawn on a lattice

The lattice of points in a 2D plane is the arena for exploring integer number properties. Each
point is defined by integer coordinates (a,b). Diagonals between lattice vertices are of surd length.
Consider, the question of what surd lengths are possible for all such diagonals of the lattice. What
restricts the lengths of such diagonals? The code integerLatticeSurdDiagonals.ipynb delivers our
picture to consider:

Figure 17.1: Diagonal Lengths of integer lattice

We note that the expression inside the root (the radicand) naturally form a quadratic sequence.
The symmetry lends itself to a representation of the radicand lengths within a matrix, in which each
cell point (a,b) has a value of c = a2 +b2:

https://colab.research.google.com/drive/1H_4sXhA4LlzEI7mEaJk7Q4uMiozo3DiD?usp=sharing

300 Chapter 17. Integer Lattice problems

1. Fermat Primes: A Fermat prime is a prime number that can be expressed as the sum of two
squares, p = m2 +n2. In our matrix, cells where c is a Fermat prime are highlighted. These
primes are directly visualized in our lattice as the length of diagonals that are square roots of
prime numbers.

2. Semi-Primes: Semi-primes are products of two primes, often represented as q = p1 · p2. In
the lattice, these correspond to surds where a2 +b2 results in a semi-prime.

By translating the geometric concept of lattice diagonals into a multiplication table we again
bridge geometry and number theory. Representing diagonals in the a×b matrix such that a =< b
we have as the only possible lengths, the Fermat primes (blue), semi-(Fermat) primes (green)
and those compound numbers (encoded by increasing numbers of factors yellow to orange) that
correspond to compound versions of those (semi)-Fermat radicands.

Figure 17.2: Diagonal Lengths of integer lattice as Multiplication table a2 +b2

numberedMatrixOfLatticeSurdsjustColors.ipynb implements this to produce the matrix (17.2).

https://colab.research.google.com/drive/16G1sVtMhA47HdFRdbRH4ue9EzY-8XSt6?usp=sharing

17.1 Surd diagonals drawn on a lattice 301

We can drop the numbers and just look at the colours for greater representation. or de-emphasise

Figure 17.3: 100x100 and 500x500 upper diagonal Matrices of surd length with blue Fermat primes

the primes, treat semi-primes as red hot special and compound surds in receding hues of orange as
their factor composition multiply

Figure 17.4: Matrices of surd length emphasising factor multiplicity from low-red to high-yellow

The code snippet below highlights the matrix colour presentation:

def create_matrix_plot_with_options(matrix_size, print_numbers, condition):
matrix = np.ones((matrix_size, matrix_size, 3)) # Default white color
Calculate the font size dynamically based on the matrix size
font_size = max(1, int(28 - matrix_size / 2))
for a in range(1, matrix_size + 1):

for b in range(1, matrix_size + 1):
Check the condition based on user input
if (condition == ’a<=b’ and a <= b) or (condition == ’a>b’ and a > b):

c = a**2 + b**2
Assign color based on the type of number
if is_fermat_prime(c):

302 Chapter 17. Integer Lattice problems

color = [0, 0, 1] # blue
elif is_prime(c):

color = [1, 0, 0] # Red
elif is_semi_prime(c):

color = [0.56, 0.93, 0.56] # Light green
else:

factor_count = count_prime_factors(c)
#yellow- to orange
color_intensity = min(factor_count / 5, 1) # Normalize intensity
color = [1, 0.5 + 0.5 * color_intensity, 0]

matrix[a-1, b-1] = color

17.2 Circumscribing polygons
Circumscribing and inscribing polygons provide a method for approximating the circumference
of a circle while investigating the relationship between the perimeter and area of polygons. This
relationship leads to the conclusion that a circle is the limiting polygon with the minimum perimeter-
to-area ratio.

17.3 Circumscribing and Inscribing Polygons
Given a circle with radius r, circumscribing polygons are constructed by placing n vertices equidis-
tantly along the circle’s circumference and connecting them. As n increases, the polygon’s perimeter
approaches that of the circle. The perimeter Pc of the circumscribing polygon with n sides can be
expressed as:

Pc = n ·2r · sin
(

π

n

)
.

Inscribing polygons involve placing n vertices on the circle such that the sides of the polygon are
tangent to the circle. As n increases, the polygon’s perimeter approaches that of the circle. The
perimeter Pi of the inscribing polygon with n sides can be expressed as:

Pi = n ·2r · tan
(

π

n

)
.

17.4 Perimeter-to-Area Ratio
Comparing the perimeters and areas of circumscribing and inscribing polygons reveals an interesting
relationship. Let Ac be the area of the circumscribing polygon, and Ai be the area of the inscribing
polygon. The perimeter-to-area ratios Rc and Ri for circumscribing and inscribing polygons
respectively are given by:

Rc =
Pc

Ac
, Ri =

Pi

Ai
.

As n tends to infinity, both Rc and Ri converge to the same value, which is the perimeter-to-area ratio
of a circle. This establishes that a circle is the limiting polygon with the minimum perimeter-to-area
ratio among all polygons. In mathematical terms:

lim
n→∞

Rc = lim
n→∞

Ri =
2πr
πr2 =

2
r
.

The code categorizes

https://colab.research.google.com/drive/1w5OgaUhHUBL7t9GmsOPQY1k6PrJ8n33P?usp=sharing

17.4 Perimeter-to-Area Ratio 303

def inscribe_polygon(n):
side_length = 2 * math.sin(math.pi / n)
perimeter = n * side_length
fraction_of_circumference = perimeter / (2 * math.pi)
area = 0.5 * n * side_length**2 / math.tan(math.pi / n)
fraction_of_area = area / math.pi
return side_length, n, perimeter, fraction_of_circumference, area, fraction_of_area

def calculate_areas_perimeters(n, r):
side_length_inscribed = 2 * r * math.sin(math.pi / n)
circumscribed_perimeter = n * side_length_circumscribed
inscribed_perimeter = n * side_length_inscribed

circumscribed_area = (circumscribed_perimeter**2) / (4 * math.pi)
inscribed_area = (inscribed_perimeter**2) / (4 * math.pi)

return circumscribed_area, inscribed_area, circumscribed_perimeter, inscribed_perimeter

304 Chapter 17. Integer Lattice problems

17.5 Tournaments in Directed Graphs

A tournament in graph theory is a complete directed graph, meaning there is exactly one directed
edge between each pair of vertices. In the context of a sporting tournament, vertices can be thought
of as players or teams, and edges represent the outcome of a match between them.

Transitive and Cyclic Tournaments

Within tournaments, two important structures are transitive and cyclic tournaments:

• A transitive tournament is one where if player A beats player B, and player B beats player
C, then player A also beats player C. In graph terms, this implies no directed cycles.

• A cyclic tournament contains cycles, meaning there is no overall winner. If player A beats
player B, and player B beats player C, it does not necessarily imply that A beats C.

Figure 17.5: Transitive tournaments for n=3 players.

Example for n = 4

In the case of n = 4 (four players), the tournaments can exhibit both transitive and cyclic properties:

1. Transitive Example: Consider players 0, 1, 2, and 3. If 0 beats 1, 1 beats 2, and 2 beats 3,
then a transitive structure is formed with edges (0,1),(1,2),(2,3).

2. Cyclic Example: If 0 beats 1, 1 beats 2, 2 beats 3, and 3 beats 0, we have a cycle, forming a
cyclic tournament.

Finding Subtournaments in a 4-Player Tournament

In a tournament with n = 4 players, we can look for smaller subtournaments that are either
transitive or cyclic. A subtournament is a tournament formed by a subset of the players of the
original tournament. A transitive subtournament is one where the relationships are strictly ordered.
In other words, if player A beats player B, and player B beats player C, then player A must also
beat player C. In tournaments with n = 4, subgraphs exhibiting transitivity can exist even within
larger non-transitive structures. These subgraphs highlight partial orderings where some players
consistently beat others, forming a hierarchy within the subset of players.

• To find a transitive subtournament for n = 3 within an n = 4 tournament, we look for a
sequence of players where each player defeats the next in the sequence.

• For example, in a tournament with players labeled 0,1,2, and 3, if the edges are (0,1),(1,2),(2,3),
then the subtournament formed by players 0,1, and 2 is transitive.

Tournamentstransivity.ipynb produces these two figures

https://colab.research.google.com/drive/1oVwakdMkJp3kwTMYuRB_is-NAUWPj3Bh?usp=sharing

17.5 Tournaments in Directed Graphs 305

Figure 17.6: Transitive Tournaments for n=4 players

Permutation Edges

0123 (0,1) (0,2) (0,3) (1,2) (1,3) (2,3)

0132 (0,1) (0,3) (0,2) (1,3) (1,2) (3,2)

0213 (0,2) (0,1) (0,3) (2,1) (2,3) (1,3)

0231 (0,2) (0,3) (0,1) (2,3) (2,1) (3,1)

0312 (0,3) (0,1) (0,2) (3,1) (3,2) (1,2)

0321 (0,3) (0,2) (0,1) (3,2) (3,1) (2,1)

1023 (1,0) (1,2) (1,3) (0,2) (0,3) (2,3)

1032 (1,0) (1,3) (1,2) (0,3) (0,2) (3,2)

1203 (1,2) (1,0) (1,3) (2,0) (2,3) (0,3)

1230 (1,2) (1,3) (1,0) (2,3) (2,0) (3,0)

1302 (1,3) (1,0) (1,2) (3,0) (3,2) (0,2)

1320 (1,3) (1,2) (1,0) (3,2) (3,0) (2,0)

2013 (2,0) (2,1) (2,3) (0,1) (0,3) (1,3)

2031 (2,0) (2,3) (2,1) (0,3) (0,1) (3,1)

2103 (2,1) (2,0) (2,3) (1,0) (1,3) (0,3)

2130 (2,1) (2,3) (2,0) (1,3) (1,0) (3,0)

2301 (2,3) (2,0) (2,1) (3,0) (3,1) (0,1)

2310 (2,3) (2,1) (2,0) (3,1) (3,0) (1,0)

3012 (3,0) (3,1) (3,2) (0,1) (0,2) (1,2)

3021 (3,0) (3,2) (3,1) (0,2) (0,1) (2,1)

3102 (3,1) (3,0) (3,2) (1,0) (1,2) (0,2)

3120 (3,1) (3,2) (3,0) (1,2) (1,0) (2,0)

3201 (3,2) (3,0) (3,1) (2,0) (2,1) (0,1)

3210 (3,2) (3,1) (3,0) (2,1) (2,0) (1,0)

Table 17.1: List of Permutations with Edge Labels for n = 4

306 Chapter 17. Integer Lattice problems

Cyclic Subtournaments
A cyclic subtournament contains cycles, meaning there is no player who defeats all the others in
the subset.

• To identify a cyclic subtournament, we look for a sequence of players where the last player
in the sequence defeats the first, forming a cycle.

• For instance, if players 0,1, and 2 have edges (0,1),(1,2),(2,0), they form a cyclic subtour-
nament.

Given a tournament with 4 players, we can systematically check all combinations of 3 players to
determine if they form a transitive or cyclic subtournament:

1. Examine each subset of 3 players and the directed edges between them.
2. Apply the criteria for transitivity and cyclicality to each subset to categorize the subtourna-

ment.
The approach would proceed something like the following:

1. First Permutation: 0 1 2 3
• Edges: (0,1),(0,2),(0,3),(1,2),(1,3),(2,3)
• Meaning: Directed edges from player 0 to players 1, 2, and 3; from player 1 to players

2 and 3; and from player 2 to player 3.
2. Second Permutation: 0 1 3 2

• Edges: (0,1),(0,3),(0,2),(1,3),(1,2),(3,2)
• Meaning: Directed edges from player 0 to players 1, 3, and 2; from player 1 to players

3 and 2; and from player 3 to player 2.
3. Third Permutation: 0 2 1 3

• Edges: (0,2),(0,1),(0,3),(1,3),(2,1),(2,3)
• Meaning: Directed edges from player 0 to players 2, 1, and 3; from player 1 to player

3; and from player 2 to players 1 and 3.

17.6 Triangles inscribed in Circles 307

17.6 Triangles inscribed in Circles

Our objective in this section is to explore the relationship between the number of distinct triangles
that can be formed by connecting the nodes of regular n-gons (polygons). This answers the question
posed in ([15] in which we are invited to determine the number of distinct primitive triangles that
can be inscribed inside a circle dotted with evenly spaced n pins We can see below those twelve
triangles that can be inscribed inside a 12-sided dodecagon.

Figure 17.7: Distinct primitive triangles that can be inscribed in an n=12 circular pin board.

For a given number of points, n, on the circle, the task is to identify all possible triangles such
that no two triangles are the same under rotations and reflections. The approach we take involves
writing Python code, triangleInCircleWithnPins.ipynb a whose key steps are:

1. Calculating all combinations of three points from the n points on the circle.
2. Filtering out triangles that are equivalent under rotation or reflection.
3. Further refining the set of triangles by ensuring each triangle has a unique perimeter, to

exclude remaining duplicates.
4. Visualizing these triangles and compiling the data into tables for further analysis.

The code, loopingTriangleInCircles.ipynb yields two key results:

1. A set of distinct triangles for each value of n from n=3 to n=100, along with their perimeters.
2. A log-log plot illustrating the relationship between n and the number of distinct triangles, T ,

indicating a power law behavior.

https://colab.research.google.com/drive/17-SvtRBgjjG4tBe8wp-Or4Wt6OE_vnaL?usp=sharing
https://colab.research.google.com/drive/1AN3I6VxHasxCW-mgyvreBEUTJmKCUaBZ?usp=sharing

308 Chapter 17. Integer Lattice problems

T Triangle Edges Perimeter Area P/A

12 (1, 5, 9) [(1, 5), (5, 9), (9, 1)] 5.20 1.30 4.00

11 (1, 4, 8) [(1, 4), (4, 8), (8, 1)] 5.08 1.18 4.29

10 (1, 4, 7) [(1, 4), (4, 7), (7, 1)] 4.83 1.00 4.83

9 (1, 3, 8) [(1, 3), (3, 8), (8, 1)] 4.86 0.93 5.21

8 (1, 3, 7) [(1, 3), (3, 7), (7, 1)] 4.73 0.87 5.46

7 (1, 3, 6) [(1, 3), (3, 6), (6, 1)] 4.35 0.68 6.36

6 (1, 3, 5) [(1, 3), (3, 5), (5, 1)] 3.73 0.43 8.62

5 (1, 2, 7) [(1, 2), (2, 7), (7, 1)] 4.45 0.50 8.90

4 (1, 2, 6) [(1, 2), (2, 6), (6, 1)] 4.18 0.43 9.66

3 (1, 2, 5) [(1, 2), (2, 5), (5, 1)] 3.66 0.32 11.56

2 (1, 2, 4) [(1, 2), (2, 4), (4, 1)] 2.93 0.18 16.02

1 (1, 2, 3) [(1, 2), (2, 3), (3, 1)] 2.04 0.07 30.38

Table 17.2: Summary of 12 Inscribed Triangle primitives of Dodecagon 12-gon

Figure 17.8: 208 distinct primitive triangles that can be inscribed on an n=50 circular pin board.

17.6 Triangles inscribed in Circles 309

Figure 17.9: Cumulative Perimeter of T primitive triangles that can be inscribed in an n-pin circular
board.

From the log-log plot we see a bet fit that is of a quadratic ax2 + bx+ c with a coefficient,
a=0.08, b=0,c=0:

Figure 17.10: Distinct number, T of primitive triangles that can be inscribed in an n circular pin
board.

The power law relationship was modeled as T = a ·nb, where the fitted parameters were found
to be approximately a ≈ 0.083 and b ≈ 2.00. This suggests a quadratic relationship between the
number of points and the number of distinct triangles, implying that as the number of points on the
circle increases, the number of distinct triangles grows quadratically.

17.6.1 Further analysis
The quadratic relationship between the number of points and distinct triangles highlights the rapidly
increasing complexity of geometrical configurations as more points are added to the circle.

A further analytical exploration of the relationship between the sum of perimeters of primitive

310 Chapter 17. Integer Lattice problems

triangles formed by points on a circle (ST) and the perimeter of the inscribed n-gon (Cn) is now
suggested

Perimeter of the n-gon (Cn)
The perimeter of an n-gon inscribed in a circle of radius r is given by:

Cn = 2nr sin
(

π

n

)
As n approaches infinity, Cn converges to the circumference of the circle, 2πr.

Sum of Perimeters of Primitive Triangles (ST)
The sum ST is influenced by two factors as n increases:

1. The combinatorial increase in the number of distinct triangles.
2. The diversity in the sizes of these triangles.

Unlike Cn, there is no straightforward formula for ST , making its growth complex and rapid.
Given the combinatorial growth in the number of triangles and their varying sizes, ST is expected

to grow significantly faster than Cn. This rapid growth leads to the observed behavior in the log-log
plot where ST increases more steeply than Cn. While Cn exhibits predictable growth, ST ’s growth
is more complex and unbounded. This complexity is likely the cause of the rapid increase in ST

relative to Cn.

Suggested Further Investigation
A more detailed mathematical investigation or computational modeling is suggested to precisely
characterize the growth of ST . Potential approaches could include:

• Developing a mathematical model to estimate the growth rate of ST .
• Computational simulations to observe the behavior of ST for large values of n.
• Investigating specific geometric configurations and their contributions to ST .

17.6 Triangles inscribed in Circles 311

Centroids and Minimal Spanning Lengths in Triangles

The four "centroids" of a triangle are its geometric centroid, orthocenter, circumcenter, and incenter:
• geometric centroid (often simply called the centroid) is the point where the three medians

of the triangle intersect where the median of a triangle is a line segment joining a vertex to
the midpoint of the opposing side. It is used to determine the minimal spanning length, also
known as the Steiner tree length, which connects the three vertices of a triangle.

• orthocenter is the point where the three altitudes of the triangle intersect. An altitude being
the perpendicular line from a vertex to the opposite side (or extension of the side).

• circumcenter is the center of the circumscribed circle of the triangle being equidistant from
all three vertices of the triangle and is the point from which the radii to the vertices are equal.

• incenter is the center of the inscribed circle (incircle) of the triangle, tangent to each side
and is equidistant from all sides of the triangle.

Because an equilateral triangle is equi-angular, the perpendicular bisectors, the medians, the angle
bisectors, and the altitudes are all the same lines so the centroid, circumcenter, incenter, and
orthocenter all coincide.

Figure 17.11: Equilateral triangle with perpendicular bisectors

The code, equilateralTriangle-generalForm.ipynb calculates the perpendicular bisectors of the
sides of an equilateral triangle using the general form of a straight line equation, ax+by = c to
handle the special case of a vertical line, in which b = 0, so that x = c

a . For non-vertical lines, it
computes the slope as the negative reciprocal of the slope of the side of the triangle, m1m2 =−1.

def line_equation(point, midpoint):
The perpendicular slope is -1/slope of the side
if point[0] - midpoint[0] != 0:

slope = (point[1] - midpoint[1]) / (point[0] - midpoint[0])
a = -slope
b = 1

else: # If the side is vertical, the perpendicular is horizontal
a = 1
b = 0

c = a * point[0] + b * point[1]
return a, b, c

https://colab.research.google.com/drive/1TN-0LucSXcOJnlV1u-zFrncILcEQuRwZ?usp=sharing

312 Chapter 17. Integer Lattice problems

When plotting the lines, the code checks if b ̸= 0, which would indicate a non-vertical line, and
then calculates y for a range of x values and plots the line. If b = 0, indicating a vertical line, the
code uses the plt.axvline function to plot a vertical line at x = c

a . The intersection of the three
perpendicular bisectors is also the center of mass of the triangle, assuming it is made of a uniform
material. The centroid divides each median in a ratio of 2:1, where the longer segment is between
the vertex and the centroid.

Figure 17.12: Centroid types of some triangles

We wish to lay fibre optic cables, connecting these nodes of commerce, culture, and governance
with the least amount of digging and disruption. The geometric centroid (known as the Fermat
point of the triangle for non-obtuse triangles) provides the optimal connection point, where the total
length of the cable is minimized. The minimal spanning tree length provided by the centroid has a
length that is 1√

3
times two thirds of the perimeter (spanning length) of the triangle given that the

centroid divides each median in a ratio of 2 : 1, and the sum of the distances from the centroid to
each vertex is equal to the sum of the medians’ lengths divided by 3. Said another way, given side
lengths of the triangle as d, the median, m, connecting a vertex to the midpoint of the opposite side,
is m =

√
3

2 d.
Consider then connecting the three UK cities of Bristol, Birmingham, and London as the

vertices of an equilateral triangle.

17.6 Triangles inscribed in Circles 313

Figure 17.13: UK hubs drawn with mapTool.

The point where medians converge—the centroid—is 2
3 m from each vertex, or d

2 given our
equilateral assumption. Thus, the total fibre length required is 3× d

2 , a savings of d
2 compared to

direct inter-city connections. Placing a network hub near the centroid at Oxford ensures equitable
service delivery and reduced infrastructure costs.

The distance from the centroid to any vertex is 2
3 of the median, which is:

Distance from Centroid to Vertex =
2
3
×

√
3

2
d =

d
2

Therefore, the total length of cable required to connect the towns via the centroid is:

Total Cable Length = 3× d
2
=

3d
2

This is shorter than the total length of cable that would be required to connect the towns directly
to each other, which would result in a total length of ‘2d‘.

For scalene we see the following

https://www.freemaptools.com/radius-around-point.htm

314 Chapter 17. Integer Lattice problems

Figure 17.14: Centroid span tree lengths versus spanning Lengths of scalenes

Given that a power law is apparent. Let us focus on the laws that determine Incenter and
geog=center

Figure 17.15: Regression of Centroids versus spanning Lengths of scalenes

17.7 spiralling 315

17.7 spiralling
PrimaryColoredBohmianQuadraticPolygon.ipynb delivers

Figure 17.16: Quadratic Scaling

17.8 chapter end notes
Island Area Implementation
By area we have:

Power-Law Fit Implementation
• Old Code: No fitting applied to the histogram data.
• New Code: Applies power-law fitting to the histogram data and plots the fit line.

https://colab.research.google.com/drive/13fwK8hUWR4s9QIu-eivA-nPSFKOiXpsR?usp=sharing

316 Chapter 17. Integer Lattice problems

Figure 17.17: By Area Size Coin Island Distributions

Figure 17.18: By Length Size Coin Island Power Law fit

18. Diophantine Equations

“’‘Geometry is knowledge of the eternally existent.’.”
— Pythagoras

1. Linear Diophantine Equations: Form: ax+by = c.
Geometric Connection: Represents a line in a plane.

2. Quadratic Diophantine Equations: Examples and Geometric Connections:
• Circle: x2 + y2 = r2.
• Ellipse: x2

a2 +
y2

b2 = 1.
• Parabola: y2 = 4ax.
• Hyperbola: xy = c or x2 − y2 = c.

3. Cubic Diophantine Equations: Example: Mordell’s Equation, y2 = x3 + k. Special case
for the fractional power law equation y = x2/3 is y2 = x3 (Mordell’s Equation with k = 0).
DiophantineRationalpower.ipynb delivers the following graph

Figure 18.1: The fractional 2/3 power equation as a Diophantine Mordel equation with k=0

4. igher Degree Equations: Example: Elliptic curves, y2 = ax4 +bx3 + cx2 +dx+ e.
5. Other Complex Forms: Diophantine equations can also be in more complex forms, like

an +bn = cn for n > 2, which is famously known from Fermat’s Last Theorem.

https://colab.research.google.com/drive/1g-ISbWXD8rU-I2m4jUD-YuvmutaC1eWi?usp=sharing

318 Chapter 18. Diophantine Equations

whereas ellipticCurveStraightLineIntersection.ipynb delivers the elliptical curves
Given a Diophantine equation ax+by = c, where a, b, and c are integers, we can use Bezout’s

identity to find the general solution. Bezout’s identity states that if gcd(a,b) = d, then there exist
integers u and v such that au+bv = d.

18.1 Using Bezout’s Identity to Solve Diophantine Equations
To find the general solution of the Diophantine equation, we need to check if the gcd(a,b) divides
c, i.e., d | c. If d divides c, then we can multiply both sides of Bezout’s identity by c

d to get:

a
(cu

d

)
+b
(cv

d

)
= c

Thus, a particular solution of the Diophantine equation is x0 =
cu
d and y0 =

cv
d . The general

solution can then be expressed as:

x = x0 +
b
d

t, y = y0 −
a
d

t

where t is an integer.
Let’s find the general solution for the Diophantine equation 1485x+1745y = 15:
First, we calculate gcd(1485,1745):

1745 = 1 ·1485+260

1485 = 5 ·260+185

260 = 1 ·185+75

185 = 2 ·75+35

75 = 2 ·35+5

35 = 7 ·5+0

Hence, gcd(1485,1745) = 5. Since 5 divides 15, we can proceed to find the particular solution.
Using Bezout’s identity, we have:

1485u+1745v = 5

1485(38)+1745(−32) = 5

So, x0 = 15 ·38 = 570 and y0 = 15 ·−32 =−480.
Therefore, the general solution of the Diophantine equation 1485x+1745y = 15 is:

x = 570+
1745

5
t, y =−480− 1485

5
t

where t is an integer.

Analysis of Diophantine Set for Square and Non-Square Numbers
We have that a number a is a quadratic residue modulo n if there exists an integer x such that:

x2 ≡ a (mod n). (18.1)

For every integer x, there exists an a such that a is a perfect square:

a = x2. (18.2)

18.1 Using Bezout’s Identity to Solve Diophantine Equations 319

so that a is always a quadratic residue modulo any n. To identify non-square numbers, we consider
the Diophantine set determined by the equation:

(a− z2 − x−1)2 +((z+1)2 −a− y−1)2 = 0. (18.3)

This equation implies that for the sum of two squares to be zero, each term must individually equal
zero, leading to the system:

(a− z2 − x−1)2 = 0, (18.4)

((z+1)2 −a− y−1)2 = 0. (18.5)

Solving this system gives:

a = z2 + x+1, (18.6)

a = (z+1)2 + y+1. (18.7)

While it is a terribly inefficient way to generate a set excluding square numbers it is useful to observe
how easy it to implement such an algorithm with the following snippet from nonSquare.ipynb:

def generate_non_squares(limit):
non_squares = set()
for x in range(limit):

for z in range(limit):
a1 = z**2 + x + 1
a2 = (z + 1)**2 + 1
if not is_square(a1) and a1 <= limit:

non_squares.add(a1)
for y in range(limit):

a2y = a2 + y
if not is_square(a2y) and a2y <= limit:

non_squares.add(a2y)
return sorted(list(non_squares))

1. Initialize an empty set non_squares and iterate over two variables, x and z, each ranging
from 0 up to specified limit.

2. Calculate a1 and a2 based on the given Diophantine equations, noting that the value of a2 is
initially calculated without the y term, as it will be adjusted in the subsequent loop.

3. Check if a1 is a non-square integer and within limit. If so, add a1 to the non_squares set.
4. Iterate over a variable y, ranging from 0 up to specified limit, to incrementally update a2:

a2y = a2 + y.

5. For each value of a2y, check if it is a non-square integer and within the specified limit. If so,
add a2y to the non_squares set.

https://colab.research.google.com/drive/1jsLHTlvv2os-n6dMLfrg6XIiHPDh9FXF?usp=sharing

320 Chapter 18. Diophantine Equations

Quadratic Residues and Gauss’s Law of Reciprocity
Quadratic residues are pivotal in the study of modular arithmetic, particularly concerning the
solvability of quadratic equations and the residue of a square number with respect to a divisor n is
key to this understanding: if a number a yields a (residue remainder r when divided by n, and if
some square number also results in the remainder r, then a is termed a quadratic residue modulo n.

Quadratic Residue Example with n = 5 and a = 3:
Consider a = 3. We aim to determine if an integer x exists such that x2 ≡ 3 mod 5.

• Testing integers reveals x = 2 as a potential solution; however, 22 = 4, and 4 mod 5 = 4.
• No integer squared gives a remainder of 3 when divided by 5.
• Hence, 3 is a non-residue modulo 5.
In Legendre symbol notation, this is expressed as:(

3
5

)
=−1 (3 is a non-residue modulo 5)(

5
3

)
=−1 (5 is a non-residue modulo 3)

Quadratic Residue Example with n = 7 and a = 2:
Consider a = 2. We seek an integer x such that x2 ≡ 2 mod 7.

• x = 3 satisfies this, as 32 = 9 and 9 mod 7 = 2.
• Therefore, 2 is a quadratic residue modulo 7, with 3 as its square root modulo 7.
In Legendre symbol notation, this is expressed as:(

2
7

)
= 1 (2 is a residue modulo 7)(

7
2

)
=−1 (7 is a non-residue modulo 2)

These hint that there is an underlying law, inevitably formally captured by Gauss: his Law of
Quadratic Reciprocity which states:

(
p
q

)
·
(

q
p

)
= (−1)

(p−1)(q−1)
4

for two odd primes p and q.
For the primes p = 3 and q = 5:

(−1) · (−1) = 1 matches (−1)
(3−1)(5−1)

4 = 1

For the primes p = 2 and q = 7 we have:

(1) · (−1) =−1 matches (−1)
(2−1)(7−1)

4 =−1

18.1 Using Bezout’s Identity to Solve Diophantine Equations 321

18.1.1 Lattice Point Diophantinism
The Diophantine equation ax+by = c has integer solutions when gcd(a,b) is a divisor of c. Con-
sider the family of lines Ln that traverse all integer lattice points. The equation of a line in the form
y = mx+ y0 can be used to describe the lines Ln.

19. Determination

Consider a triangle with vertices at (0,0), (4,0), and (0,3). The area A can be calculated using the
determinant formula for vertices (x1,y1), (x2,y2), and (x3,y3):

A =
1
2

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
0 0 1

4 0 1

0 3 1

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣=
1
2
|0 ·0 ·1+4 ·3 ·1+0 ·0 ·1−0 ·3 ·1−4 ·0 ·1−0 ·0 ·1|= 6

To confirm this result with the 1
2 absin(C) formula, observe:

- Side lengths a and b are 4 and 3, respectively, forming the right angle C = 90◦. - Thus,
sin(C) = sin(90◦) = 1.

The area calculation is therefore:

A =
1
2
·4 ·3 ·1 = 6

Both methods yield an area of 6 square units for the triangle, illustrating that the determinant
approach and the 1

2 absin(C) formula are consistent and provide the same result for the area of a
triangle.

19.1 Pythagorean Triples
Pythagorean triples are the set of right angled triangles whose three sides have Natural numbers as
lengths. All Pythagorean triple such as (3,4,5), has both integer Perimeters and Areas. A345 = 6
and P345 = 12. Another well-known triple, (5,12,13), also possesses an integer area A(5,12,13) of
30.

• Pythagorean Triples: These are sets of three positive integers a, b, and c such that a2+b2 =
c2. They represent the sides of right triangles with all integer side lengths.

324 Chapter 19. Determination

• Right Triangles with Integral Areas: Right triangles that have an area that can be expressed
as an integer. Notably, these triangles don’t necessarily have rational hypotenuse lengths.

A typical formula to generate Pythagorean triples is:

a = m2 −n2,

b = 2mn,

c = m2 +n2,

where m and n are coprime (i.e., their greatest common divisor is 1), m > n, and they are not both
odd (i.e., one of them is even). From this formula, we observe that:

1. a will always be even, because it’s the difference of two squares.
2. b will always be even, due to the presence of a factor of 2.
3. c can be odd if both m and n are even.

Therefore, it’s impossible for both a and b to be odd simultaneously. This implies there are no
Pythagorean triples where both of the two shorter sides (legs) are odd integers.

One can generate scaled versions of triples like (6,8,10) that are just multiples of (3,4,5) but
we are interested only in those like (7,24,25) and (8,15,17) that are not a multiple of another triple
and as such are called primitive. Integral triangles are triangle whose areas also take on integer
values. The natural question is the set of integral non pythagorean triple triangles as big as the triple
set itself.

The nth triangle number, Tn, is given by:

Tn =
n(n+1)

2

Given the standard form of a Pythagorean triple (m2 −n2,2mn,m2 +n2), if we set m = n+1:
1. First side (difference of squares):

m2 −n2 = 2n+1

This is always odd.
2. Second side (product of m and n):

2mn = 2n(n+1)

This is twice the nth triangular number and is always even.
3. Third side (sum of squares):

m2 +n2 = 2n2 +2n+1

This is always odd.
For a right triangle with legs a and b, the area A is:

A =
1
2

ab

For the area to be an integer, at least one of a or b must be even. In our generated triple where
m = n+1, one side (the one involving the triangular number) is even, while the other is odd. This
ensures the triangle’s area is integral.

19.1 Pythagorean Triples 325

19.1.1 Generating Pythagorean Primitives
Generating the ordered set of primitive Pythagorean triples from the set of straight lines with
rational gradients that intersect the unit circle, reveals some interesting structure as detailed in
Kaplan’s book, ’Hidden Harmonies’, [8]. Now, we will find the lines of the form y = mx+m
that emanate from the point P = (−1,0) and intersect the unit circle centered at (0,0) at a point
Q = (q,r) with rational coordinates q and r. The numerator and denominator of q and r will reveal
the Pythagorean triples. Let’s substitute y = mx+m into the equation of the unit circle:

x2 + y2 = 1,

x2 +(mx+m)2 = 1,

x2 +m2x2 +2m2x+m2 = 1,

(1+m2)x2 +2m2x+(m2 −1) = 0.

Using the quadratic formula, we can solve for x:

x =
−2m2 ±

√
(2m2)2 −4(1+m2)(m2 −1)

2(1+m2)
,

x =−m2 ±
√

4m4 −4(1+m2)(m2 −1)
2(1+m2)

=−m2 ±
√

4m4 −4(m4 −1)
2(1+m2)

,

=−m2 ±
√

4
2(1+m2)

=
1−m2

1+m2

Now, substitute x back into the equation y = mx+m to get y:

y = m
(

1−m2

1+m2

)
+m =

m−m3 +m(1+m2)

1+m2 ,

=
−m3 +2m2 +m+m3

1+m2 =
2m

1+m2

The points of intersection (q,r) with the unit circle and the set of straight lines with rational gradient
values of m, emanating from (−1,0) deliver the Pythagorean triangle side lengths as co-ordinates.
The three natural numbers a,b,c making up the fractions of those coordinate pairs latex(a

c ,
b
c) are

our triples. Each straight line from latex(−1,0) has the form

y =
m
n

x+
m
n
.

For example, the (3,4,5) triple arises from the intersecting yellow line above,

y =
4
5 −0

3
5 − (−1)

x+ y(0) =
4
5

8
5

x+
1
2
=

1
2

x+
1
2
.

Coding of intersection_point(m)
The function that calculates the intersection point of a line, with gradient m, emanating from the
point (-1, 0) and intersecting a unit circle centered at (0, 0). It returns the coordinates (x,y) of the
intersection point with the unit circle defined using numpy arrays:

• circle_x: Represents 400 linearly spaced values between -1 and 1.
• circle_y_positive: Computes the positive y-values corresponding to circle_x based

on the equation of the unit circle y =
√

1− x2.

326 Chapter 19. Determination

• circle_y_negative: Represents the negative counterpart of circle_y_positive.
The figure overleaf with size 8x8 is initialized. The positive and negative y-values of the unit circle
are plotted against circle_x using a red color. A list of specific gradients (given as fractions) is
defined in highlighted_m. These represent the slopes of specific lines of interest. Corresponding
colors for these lines are defined in highlighted_colors.

Figure 19.1: Pythagorean Triples as co-ordinate intersections of unit circle with rational gradient
straight lines emanating from (-1,0)

The code to draw this is UnitCirclePythagTriples.ipynb with crucial snippet:

def intersection_point(m):
x = (1 - m**2) / (1 + m**2)
y = (2 * m) / (1 + m**2)
return x, y

Define the unit circle
circle_x = np.linspace(-1, 1, 400)
circle_y_positive = np.sqrt(1 - circle_x**2)
circle_y_negative = -np.sqrt(1 - circle_x**2)
Plotting
fig, ax = plt.subplots(figsize=(8,8))
ax.plot(circle_x, circle_y_positive, ’r’)
ax.plot(circle_x, circle_y_negative, ’r’)
highlighted_m = [Fraction(1, 2), Fraction(1, 4), Fraction(4, 5), Fraction(2, 3)]
highlighted_colors = [’green’, ’purple’, ’orange’, ’cyan’]

https://colab.research.google.com/drive/1CodJkkY9MrZci7XBfbK-P_pB0RRiZGCw?usp=sharing

19.1 Pythagorean Triples 327

19.1.2 Pythagorean scatterplots

Plotting primitive triples’ hypotenuse against their respective largest acute angle reveals a beaded
curtain surely worthy of some more investigation if not in the league of Illustrating Mathematics:
hypoteneusevsAcutsPPT.ipynb generates a scatterplot of Acute angles versus hypoteneuse length
of primitives.

Figure 19.2: Largest Acute angle versus Hypotenuse of Pythagorean Triples

def generate_triples(limit):
triples = []
for m in range(2, limit):

for n in range(1, m):
if (m - n) % 2 == 1 and np.gcd(m, n) == 1:

a = m**2 - n**2
b = 2*m*n
c = m**2 + n**2
triples.append((a, b, c))

return triples
triples = generate_triples(10)

The function generate_triples(limit) aims to generate primitive Pythagorean triples.
• limit (integer): An upper boundary for the values of m. This parameter determines the

range within which the Pythagorean triples will be generated.
• A list of tuples, where each tuple (a,b,c) represents a primitive Pythagorean triple.

1. Initialize an empty list called triples to store the resulting triples.
2. For each integer m from 2 up to (but not including) limit:

• For each integer n from 1 up to (but not including) m:
– Check if m− n is odd and the greatest common divisor (GCD) of m and n is 1

(ensuring the generated triple is primitive).
– If both conditions are met:
– Append the tuple (a,b,c) to the triples list.

3. Return the list triples.
The line triples = generate_triples(10) outside the function calls generate_triples

with a limit of 10 and stores the resulting list of triples in the variable triples.
logAvsAcutePPT.ipynb delivers a log(area) versus the largest acute angle of the triangle.

https://colab.research.google.com/drive/1fYUSltpERHwkjOUgnLrwrO_WhnEo9ErS?usp=sharing
https://colab.research.google.com/drive/1rU4xO2oFrz1EvnwwSA9YsnWPxPurZQ8o?usp=sharing

328 Chapter 19. Determination

Figure 19.3: The bead curtain of 6000 triples with detractor primitives highlighted.

Figure 19.4: A fuller detractor curtain of 30,000 triples.

Those triples with the smallest areas are easily identified being the early stage small triples that
seem to be strange detractors.

19.1 Pythagorean Triples 329

19.1.3 Annotated log-log plots
Plotting the two shorter sides of the triple in a scatter gram and labelling with respective hypotenuse
length is delivered by the following code loglogm-nsquaredPPT.ipynb additionally draws the
following scatterplot revealing some limiting structures within the triples.

Figure 19.5: Plot of the two shorter sides of the triple in a scattergram.

Figure 19.6: Plot of the two shorter sides of the triple in a scattergram.

https://colab.research.google.com/drive/1iIikGKzJ0Qp65ihebsM73QNJVU0WdDi2?usp=sharing

330 Chapter 19. Determination

19.2 Hyperbolic Construction of Pythagorean Triples

Our classic construction of Pythagorean triples using the intersection of a line y = mx+m with
a unit circle, defined by x2 + y2 = 1, works due to the trigonometric identity sin2

θ + cos2 θ = 1
being of Pythagorean triple form, a2 +b2 = c2. Consider instead of a circle, a square hyperbola,
defined by

x2 − y2 = a2, (19.1)

for a = 1 and similarly invoke the hyperbolic functions sinh and cosh which are to the hyperbola
as their trigonometric function cousins are to the circle. The identity for hyperbolic functions that
parallels the Pythagorean identity for trigonometric functions is:

cosh2
θ − sinh2

θ = 1. (19.2)

Consider a hyperbola defined by (19.1) and a line defined by the equation y = mx, where m = tan(θ)
is the slope of the line. To find the intersection points, we substitute the equation of the line into the
hyperbola equation:

x2 − (mx)2 = a2 so, x2(1−m2) = a2.

Solving for x and considering only the positive square root for simplicity, we have the intersection
point of the line with the hyperbola in the first quadrant given by

x2 =
a2

1−m2 , so that x =±

√
a2

1−m2 and

√ a2

1−m2 ,m ·

√
a2

1−m2

 .

Figure 19.7: Pythagorean Triples from Unit CIrcle and Hyperbola

A line y = m(x+1) with rational slope m = p
q intersecting the unit circle and hyperbola curves

yield points with rational coordinates. It is on the unit circle, that these points are usually related
to the Pythagorean triples. But as you can see from figure () this can equally an arguably more
elegantly be revealed on the square hyperbola.

The code UnitCircleHyperbola.ipynb

fig:unitH37
https://colab.research.google.com/drive/1MPyk-kQtpqkCgRhTda-6IjkCp2IXS9nm?usp=sharing

19.2 Hyperbolic Construction of Pythagorean Triples 331

19.2.1 Diophantine Equations and Modular Functions:

Exploring variations of the circle’s equation, like elliptic curves or general Diophantine equations,
often requires the use of modular functions. These functions provide a powerful framework for
analyzing properties of elliptic curves, including their rational points and connections to modular
forms.

The equation of a square hyperbola (19.1) can be parametriseed by the hyperbolic functions as,

x = acoshθ , y = asinhθ .

which when substituted into (19.1) we see the hyperbolic identity (19.2) emerge:

(acoshθ)2 − (asinhθ)2 = a2 (19.3)

Given the hyperbola equation x2 − y2 = a2 and a line equation y = mx+ c, we find the intersection
points by substituting the line equation into the hyperbola equation: x2− (mx+c)2 = a2, expanding
and rearranging, to get a quadratic equation in terms of x:

x2 − (m2x2 +2mcx+ c2) = a2.

Simplifying further this reads as:

(1−m2)x2 −2mcx− (c2 +a2) = 0,

which is a quadratic equation of the form Ax2 +Bx+C = 0, where A = 1−m2, B = −2mc, and
C = −(c2 +a2) and is implemented in the following code, cycleHyperbolaPythagTriples.ipynb.
The above intersection is achieved with the following snippet:

def find_hyperbola_intersection(m, c, a):
A = 1 - m**2
B = -2 * m * c
C = -(c**2 + a**2)

discriminant = B**2 - 4 * A * C
if discriminant < 0:

return [] # No real intersections
else:

x1 = (-B + np.sqrt(discriminant)) / (2 * A)
x2 = (-B - np.sqrt(discriminant)) / (2 * A)
y1 = m * x1 + c
y2 = m * x2 + c
return [(x1, y1), (x2, y2)]

https://colab.research.google.com/drive/1iJ43ojjGkkYUVD_DqfWlBlMEG0Ga0HRt?usp=sharing

332 Chapter 19. Determination

Figure 19.8: Pythagorean Triples from the elevenths.

19.2 Hyperbolic Construction of Pythagorean Triples 333

The snippet sorts the final list

for m, c in lines:
frac_m = Fraction.from_float(m).limit_denominator()
frac_c = Fraction.from_float(c).limit_denominator()
line_x = np.linspace(-5*a, 5*a, 400)
line_y = m * line_x + c
ax.plot(line_x, line_y, label=f’y = {frac_m}x + {frac_c}’)
intersections = find_hyperbola_intersection(m, c, a)
for x_int, y_int in intersections:

if not (np.isclose(x_int, -1) and np.isclose(y_int, 0)): # Exclude (-1, 0)
frac_x = Fraction.from_float(x_int).limit_denominator()
frac_y = Fraction.from_float(y_int).limit_denominator()
pythagorean_result = check_pythagorean(frac_x, frac_y)
intersection_data = (f’{frac_m}’, f’({frac_x}, {frac_y})’, pythagorean_result)

if intersection_data not in all_intersections:
all_intersections.add(intersection_data)

sorted_intersections = sorted(list(all_intersections), key=lambda x: float(Fraction(x[0])))

A sorted table of triples constructed from hyperbola intersections follows.

334 Chapter 19. Determination

Line Gradient, m Intersection Coordinate Pythagorean Triple

1/8 (65/63, 16/63) 632 +162 = 652

1/7 (25/24, 7/24) 242 +72 = 252

1/6 (37/35, 12/35) 352 +122 = 372

1/5 (13/12, 5/12) 122 +52 = 132

1/4 (17/15, 8/15) 152 +82 = 172

2/7 (53/45, 28/45) 452 +282 = 532

1/3 (5/4, 3/4) 42 +32 = 52

3/8 (73/55, 48/55) 552 +482 = 732

2/5 (29/21, 20/21) 212 +202 = 292

3/7 (29/20, 21/20) 202 +212 = 292

1/2 (5/3, 4/3) 32 +42 = 52

4/7 (65/33, 56/33) 332 +562 = 652

3/5 (17/8, 15/8) 82 +152 = 172

5/8 (89/39, 80/39) 392 +802 = 892

2/3 (13/5, 12/5) 52 +122 = 132

5/7 (37/12, 35/12) 122 +352 = 372

3/4 (25/7, 24/7) 72 +242 = 252

4/5 (41/9, 40/9) 92 +402 = 412

5/6 (61/11, 60/11) 112 +602 = 612

6/7 (85/13, 84/13) 132 +842 = 852

19.3 Congruent Numbers and Square-Free Conditions 335

19.3 Congruent Numbers and Square-Free Conditions

A congruent number, N, is defined as a positive integer that can be represented as the area, A, of
a right-angled triangle with rational side lengths. We note that if N is a congruent number and s
is a square integer such that the Möbius function µ(s) = 0 (indicating that s is not square-free),
then the product N · s is also a congruent number. To be sure then a square-free integer is just an
integer that is not divisible by any perfect square other than 1. Consider the congruent number
N = 5, associated with the right-angled triangle with sides

(40
6 ,

9
6 ,

41
6

)
. Multiplying this triangle by

a square integer, say s = 4, yields a new triangle with sides
(40

6 ·2, 9
6 ·2,

41
6 ·2

)
, and the area of this

new triangle is 5 ·4 = 20, which is also a congruent number. However, it is the square-free part of
the number, the "primitive", N = 5, that is of primary interest.

Congruent numbers can be characterized based on their congruence class modulo 8. Specifically,
numbers that are congruent to 5, 6, or 7 modulo 8 are always congruent. The following table lists
congruent numbers less than 100, categorized by their residue modulo 8.

Congruent Numbers by Residue Classes Modulo 8

Congruent numbers have an interesting distribution when considered modulo 8.

336 Chapter 19. Determination

n 8n+5 8n+6 8n+7

0 5 6 7

1 13 14 15

2 - - 23

3 29 30 -

4 - 38 39

5 45 46 47

6 53 54 55

7 - 62 63

8 69 70 71

9 77 78 79

10 85 86 87

11 - 94 95

12 101 102 103

13 109 110 111

14 - 118 119

15 125 126 127

16 133 134 135

17 - 142 143

18 149 150 151

19 157 158 159

20 165 166 167

21 - 174 175

22 181 182 183

23 189 190 191

24 197 198 199

19.3.1 Congruent Numbers and Elliptic Curves

The congruent number problem can be translated into the problem of finding rational points on the
elliptic curve defined by y2 = x3 −N2x. Considering the sides of the N = 7 congruent triangle as
a = 288

60 ,b = 175
60 ,c =

337
60 . That the area, N = 1

2 ab, of the triangle is a congruent number follows
as ab = 2N. The associated elliptic curve y2 = x3 − 49x. Any point P(x,y) on the elliptic curve
corresponds to the sides of a triangle. A particular solution (x,y) dictates the rational lengths of the
sides of the triangle, embedding the geometric property of the triangle into the algebraic structure
of the elliptic curve.

19.3 Congruent Numbers and Square-Free Conditions 337

Figure 19.9: Elliptic curve with non primitive Congruent Number 6 and 7 identified

• N=5 the point (45,300) corresponds to triangle side(3/4,100/27,410/9)
• N=6 the point (294,5040) corresponds to triangle side (7/20,720/343,14412/49)
• N=7 the point (25,120) corresponds to triangle side (35/24,1176/125,674/25)

For a given congruent number N, and a point (x,y) on the elliptic curve y2 = x3 −N2x, there exists
a method utilizes the rational point (x,y) to express the triangle’s sides in terms of N, as follows:

• The side a as one of the perpendicular sides of the triangle is found using the formula
a = y

x ·N.
• The side b as the other perpendicular side is found using the formula b = y

x2 ·N2.

• The hypotenuse c is found using the formula c = x2+N2

x .
These translation of the abstract notion of points on an elliptic curve into the concrete geometric

terms of a right-angled triangle is particularly important in the proof of the Birch and Swinnerton-
Dyer conjecture for a given N, which is one of the Millennium Prize Problems. The conjecture
relates the number of rational points on an elliptic curve to the behavior of an associated L-function
at s = 1, and congruent numbers play a key role in its formulation.

Finding Rational Points on Elliptic Curves

The Python code aims to find non-trivial rational points on the elliptic curve defined by y2 =
x3 −N2x, where N is a given positive integer known as a congruent number. A non-trivial rational
point on this curve corresponds to a right-angled triangle with rational side lengths and an area
equal to N.

Significance of the Coordinates
For a given congruent number N, any non-trivial rational point (x,y) on the elliptic curve implies
the existence of a right-angled triangle with rational sides a,b,c (where c is the hypotenuse) and
area N. Specifically, the x-coordinate can be associated with the leg of such a triangle, while the
y-coordinate is related to the difference in the areas of two squares that describe the Pythagorean
relationship. The Python code identifies these points through an algorithmic search and visually
represents them on the curve, offering a graphical and numerical demonstration of the congruent
number problem.

Python Code Functionality
The code performs the following functions:

• Defines the elliptic curve function for a given N.

338 Chapter 19. Determination

• Searches for rational points on the curve within a specified range.
• Filters out trivial solutions where y = 0, as these do not correspond to triangles.
• Plots the elliptic curve and annotates the found non-trivial rational points.

Connection between Elliptic Curve and a System of Equations

Consider the elliptic curve given by the equation:

y2 = x3 −N2x

We aim to show a connection between this elliptic curve and a system of two equations of the
form:

x2 −ay2 = z2

x2 +ay2 = t2

We proceed by homogenizing the elliptic curve with a new variable w, assuming w ̸= 0, and then
de-homogenizing by setting w = 1 at the end:

wy2 = x3 −N2xw2

y2 =
x3

w
−N2xw

Now let’s introduce new variables z and t such that:

z =
x2

w
−Nyw

t =
x2

w
+Nyw

Squaring both z and t, we obtain:

z2 =

(
x2

w
−Nyw

)2

=
x4

w2 −2Nxy2 +N2y2w2

t2 =

(
x2

w
+Nyw

)2

=
x4

w2 +2Nxy2 +N2y2w2

Adding and subtracting these equations gives us:

z2 + t2 = 2
x4

w2 +2N2y2w2

z2 − t2 =−4Nxy2

By setting w = 1, we can simplify to:

z2 + t2 = 2x4 +2N2y2

z2 − t2 =−4Nxy2

Consider the elliptic curve given by the equation:

y2 = x3 −N2x

19.3 Congruent Numbers and Square-Free Conditions 339

We aim to show a connection between this elliptic curve and a system of two equations of
quadratic forms:

x2 −ay2 = z2

x2 +ay2 = t2

Let us introduce a new variable u such that x = u2. The elliptic curve equation becomes:

y2 = u6 −N2u2

Now, let us express y2 as a difference of two squares (??), by adding and subtracting the same term:

y2 +(
N2

2
)2 − (

N2

2
)2 = u6 −N2u2

This can be rearranged to form:

(y+
N2

2
)(y− N2

2
) = u2(u4 −N2)

Let us define two new variables z and t as follows:

z = y+
N2

2

t = y− N2

2

We then obtain two equations:

z− t = N2

zt = u2(u4 −N2)

The second equation can be written as:

u2(u2 −N)(u2 +N) = zt

20. Combinatorial Differential geoemetry

An Epi-genetic prologue
To be inappropriately concrete but as a reflection of the spirit of my own appreciation of the subject
consider that, in differential geometry, the Riemann curvature tensor Ra

bµν and the Ricci tensor
play crucial roles in describing the curvature of spacetime.

Combinatorial Analysis of Tensor Components in 4D Spacetime Analysis1

The Riemann tensor is endowed with a set of symmetries and antisymmetries that can be elegantly
described using the language of differential forms as Ωab =

1
4! Rabµνdxµ ∧dxν . The tensor exhibits

several key symmetries:
• Antisymmetry in the last two indices: Ra

bµν =−Ra
bνµ .

• Symmetry in exchanging the pair of indices: Rabµν = Rµνab.
• Cyclic identity: Ra

bµν +Ra
νbµ +Ra

µνb = 0.
• Bianchi identity: ∇λ Ra

bµν +∇µRa
bνλ +∇νRa

bλ µ = 0.
The inherent asymmetry introduced by the differential form dxµ ∧dxν and the relation of the ab
indices to the Lorentz group SO(3,1) play a significant role in the tensor’s properties. A com-
binatorial approach reveals the number of independent components and the constraints imposed
by their symmetries. The Riemann tensor Ra

bµν in four-dimensional spacetime though the inter-
play of symmetries reduces the naive count of 44 = 256 possible components to 20 independent
components:

• Antisymmetry in the last two indices (Rabcd =−Rabdc).
• Symmetry between the first and last pair of indices (Rabcd = Rcdab).
• The cyclic identity and Bianchi identity further constrain the components.

The Ricci tensor Rab, derived from the Riemann tensor, exhibits symmetry (Rab = Rba). In four-
dimensional spacetime, the number of its independent components is:

Independent components = 4C
2 +4 = 10

This reflects the 10 independent ways to choose two indices from four, considering symmetry,

342 Chapter 20. Combinatorial Differential geoemetry

where 4C2 counts the distinct pairs and the additional 4 accounts for the diagonal components
(a = b).

1The detailed exposition includes the mathematical derivation of the independent components of the Riemann and
Ricci tensors, leveraging their symmetries and antisymmetries. For the Riemann tensor, the combination of antisymmetry
in the last two indices, symmetry between index pairs, and the cyclic and Bianchi identities reduces the naive count of
44 = 256 potential components to 20 independent ones. For the Ricci tensor, its symmetric nature in a four-dimensional
spacetime results in 10 independent components, calculated as 4C2+4.

Bibliography

Books
[Ash16] Anver Ash. Summing it up. Princeton University Press, 2016 (cited on page 187).

[Ben99] Donald C Benson. The Moment of Proof. Oxford University Press, 1999 (cited on
page 252).

[Blu97] W Blumel R; Reinhardt. Chaos in Atomic Physics. Cambridge University Press, 1997
(cited on page 148).

[Bol87] Brian Bolt. Even More Mathematical Activities. Cambridge University Press, 1987
(cited on page 154).

[Hav12] Julian Havil. The Irrationals. Princeton University Press, 2012 (cited on page 29).

[Haw20] Joel David Hawkins. Proof and the Art of Mathematics. The MIT Press, 2020 (cited on
page 142).

[Hig11] Peter M Higgins. Numbers: A Very Short Introduction. Oxford University Press, 2011
(cited on page 111).

[Kap11] Ellen Robert Kaplan. Hidden Harmonies. Bloomsbury Publishing USA, 2011 (cited on
page 325).

[Lin86] Malcolm E Lines. A Number for your thoughts. Adam Hilger Ltd, 1986 (cited on
page 109).

[Mot85] Lorraine Mottershead. Investigations in Mathematics. Basil Blackwell Limited, 1985
(cited on page 98).

[Nie74] Jurg et al. Nievergelt. Compuer Approaches to Mathematical Problems. Prientice-Hall
Inc, 1974 (cited on page 74).

[Pau80] John Allen Paulos. Innumeracy. Penguin Books, 1980 (cited on page 12).

[Pir74] Robert M Pirsig. Zen and the art of motorcycle maintenance: An inquiry into values.
William Morrow and Company, 1974 (cited on pages 17, 39).

344 Chapter 20. Combinatorial Differential geoemetry

[Poy57] George Poyla. How to Solve it. Princeton University Press, 1957 (cited on page 249).

[Pri22] Chris Prichard. Experiencing Mathematics through Investigations. The Mathematical
Association, 2022 (cited on pages 155, 307).

[Rei65] W. J. Reichmann. The Fascination of Numbers. Methuen Ci Ltd, 1965 (cited on
page 111).

[Sar63] Jean-Paul Sartre. Nausea. Penguin Modern Classics, 1963 (cited on page 189).

[Sne75] L. S. Snell. Introduction to Probability Theory with Computing. prentice Hall Inc, 1975
(cited on page 290).

[Ste89] Ian Stewart. Galois Theory. Chapman and Hall, 1989 (cited on page 12).

[Wei99] E. W. Weisstein. Concise Encyclopedia of Mathematics. Chapman Hall/CRCnetBASE,
1999 (cited on page 52).

Articles
[] In: () (cited on page 268).

[Smi90] James Smith. “The College of Mathematics Journal”. In: 21.3 (May 1990), pages 196–
207 (cited on page 291).

Index

. 44

B

Binary representation.140

C

Commutative Rings . 103
Cycle Number . 134

D

Deficient Number . 45
Derangement . 285
Digital Root . 21

F

Fermat Primes . 96
Fermat-Gauss Primes . 91

K

Kendall Tau . 254

L

LCM . 29

M

Magic Square . 110
Mersennes Prime . 93
Mersennes Primes .93
Modular Arithmetic . 89
Modulus . 89

O

Oblong Number . 45

P

Perfect Number . 111
Persistence . 98
Prime Factorisation Table 43
primitive root modulo n147
Primitive Triangular Square pair 195
Proper Factor . 45

Q

Quadratic Field . 106

R

Radical Factorization 243
Rank Correlation .84
Rectangular Number . 45
Remainder . 89

346 INDEX

Reptend Prime .134

S

Semi-Prime . 45
Spearman Rank . 254

T

Twin Primes . 97

U

Ulam Spiral . 95

Z

Zap Depth . 98

	Part I — Part One: Foundations
	1 Foreword
	1.1 Prologue
	1.2 Number Nomenclature

	2 Number Theory as a Data Science
	2.1 Modular Arithmetic
	2.2 Arithmetic Functions and Algorithms
	2.3 The Group Un of Invertible Integers Mod n

	3 Composite Numbers
	3.1 Composites as p-rectangles, p>1
	3.2 The Rectangular Composites
	3.3 Highly Composite and Super abundant Numbers
	3.4 Fermat's Little Theorem
	3.5 Tiled Rectangles and Electrical Circuits
	3.6 Number Classification
	3.7 Semi-Perfect Numbers and the Knapsack Problem

	4 CuboidNumbers
	5 Prime Numbers
	5.1 Partitioning the primes
	5.2 Prime Epigraphing
	5.3 Complex Gaussian Integers and Primes
	5.4 Prime Spiral Polar Rays
	5.5 Magic Squares with an Ulam twist
	5.6 Perfect Numbers
	5.7 Density of Primes in Residue Classes
	5.8 Euler's Quadratic Prime Generator
	5.9 Helgott's Quadratic Prime Generator Formula
	5.10 End Tables

	6 Cyclicality
	6.1 Arithmetic and Metric of p-adic Numbers
	6.2 Cyclicality of the Reptend Primes
	6.3 Binary representations of Rationals
	6.4 Sum of (12)2n
	6.5 Orbits of n-cycles
	6.6 Primitive Roots and Base-b Reptend Primes
	6.7 Bakers Folding Interleaving Chaotic Map
	6.8 Benford's Law
	6.9 Aliquot Sequences

	7 Polynomial Sequences
	7.1 Worpitsky triangle
	7.2 Matrix form of linear systems

	Part II — Part Two: Foot hill Explorations
	8 Fibonacci Miscellany
	8.1 Fibonacci primes
	8.2 Fibonacci Oblongs
	8.3 Self-Enumerating Attractor Sequence
	8.4 head throwing

	9 Perspective Compositions
	9.1 Lemoine's conjecture
	9.2 Goldberg Variations
	9.3 Compound Numbers written as sum of two Squares

	10 Triangulation
	10.1 Prime Stratification with Polygonal Numbers
	10.2 Geometric Structures under Klein's Erlangen Program
	10.3 Figurative Polygon Numbers
	10.4 Figurative speaking Recipricols
	10.5 Google Sheets Implementation of Polygon-Prime stratification
	10.6 Python Implementation of Polygon-Prime stratification

	11 Exageration
	11.1 Double Factorial and Prime Divisibility
	11.2 Historical Significance of Harmonic Series and Logarithms

	12 Irrational Analysis
	12.1 Euler, e as a continued fraction
	12.2 Pi
	12.3 Continued fractions form of surds
	12.4 Square root difference of squares
	12.5 Quadratic generator of silver ratio powers
	12.6 Golden Ratio Quadratic Coefficients as Lucas Numbers
	12.7 Metallic Rationals
	12.8 Metallic Unit Area Right Triangles

	13 Unlikely Unreality of the Ramadunjan being Number
	14 The ABC Conjecture
	14.1 The co-prime ABC Triplet
	14.2 The ABC Conjecture

	Part III — Part Three: Higher Altitude Explorations
	15 Combinatorics
	15.1 Sam Lloyd Problem
	15.2 Placing Distinct Balls In distinguishable Boxes
	15.3 Statistical Ensembles
	15.4 Optimisation models
	15.5 The Secretary Problem
	15.6 The Enigma Machine and its Plugboard Feature
	15.7 Number of Triangles on an n n Grid
	15.8 Linear Algebra and Dimensional Analysis

	16 Giving a Toss
	16.1 Win Loss Frequency
	16.2 Win-Loss distribution of Coin-Tossing
	16.3 Sticking it to Pascal
	16.4 Coin Toss clustering on a table

	17 Integer Lattice problems
	17.1 Surd diagonals drawn on a lattice
	17.2 Circumscribing polygons
	17.3 Circumscribing and Inscribing Polygons
	17.4 Perimeter-to-Area Ratio
	17.5 Tournaments in Directed Graphs
	17.6 Triangles inscribed in Circles
	17.7 spiralling
	17.8 chapter end notes

	18 Diophantine Equations
	18.1 Using Bezout's Identity to Solve Diophantine Equations

	19 Determination
	19.1 Pythagorean Triples
	19.2 Hyperbolic Construction of Pythagorean Triples
	19.3 Congruent Numbers and Square-Free Conditions

	20 Combinatorial Differential geoemetry
	Bibliography
	Books
	Articles

	Index

